Citation: | Ma Tian, Li Fuquan, Lin Honghuan. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 2023, 35: 071005. doi: 10.11884/HPLPB202335.220367 |
The green laser can be used for the processing of highly reflective metals such as copper. Compared with the 1 μm laser which is broadly used now, green laser has the absorption efficiency nearly an order of magnitude higher, which can better meet the needs of various fields for the precision processing of highly reflective metals. Thus, the application prospect of high power green laser is very broad. In this paper, recent progress of high power green laser based on frequency doubling technology for fiber laser is investigated in detail. The power of green laser has increased from 100 W to 1 kW, the beam quality is close to the diffraction limit, and the output power is expected to be further improved. There are two technical routes to obtain high power green laser by using fiber laser frequency doubling technology. One is to use high power single beam fiber laser as the fundamental frequency light source and cascade single-pass frequency doubling technology. The other is to use multiple-beam fiber lasers as the fundamental frequency light source, realize beam combining and frequency doubling respectively, or beam combining and frequency doubling at the same time. The former route is simpler than the latter, but the latter has the potential of higher output power. The weak absorption of frequency doubling crystal is the common problem faced by the two technical routes.
[1] |
Uraoka Y, Kawamura Y, Yamasaki K, et al. Crystallization by green-laser annealing for three-dimensional device application[J]. Journal of the Korean Physical Society, 2010, 56(5): 1456-1460. doi: 10.3938/jkps.56.1456
|
[2] |
Hay N, Baker I, Guo Yili, et al. Stability-enhanced, high-average power green lasers for precision semiconductor processing[C]//Proceedings of SPIE 8235, Solid State Lasers XXI: Technology and Devices. 2012: 82351E.
|
[3] |
Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 2010, 49(25): F79-F98. doi: 10.1364/AO.49.000F79
|
[4] |
周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48:2000001 doi: 10.3788/CJL202148.2000001
Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001
|
[5] |
Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
|
[6] |
Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Science and Innovations 2013. 2013: AF2J. 1.
|
[7] |
Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
|
[8] |
Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]//Proceedings of SPIE 8964, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIII. 2014: 896407.
|
[9] |
Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers[C]//Proceedings of SPIE 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV. 2015: 934704.
|
[10] |
Ahmadi P, Creeden D, Aschaffenburg D, et al. Generating kW laser light at 532 nm via second harmonic generation of a high power Yb-doped fiber amplifier[C]//Proceedings of SPIE 11264, Nonlinear Frequency Generation and Conversion: Materials and Devices XIX. 2020: 1126414.
|
[11] |
Su Mengqi, You Yang, Quan Zhao, et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of a narrow-linewidth fiber laser[J]. Applied Optics, 2021, 60(13): 3836-3841. doi: 10.1364/AO.422514
|
[12] |
苏梦琪, 尤阳, 全昭, 等. 高效率单通倍频实现610W连续波单模绿光输出[J]. 中国激光, 2021, 48:1315002 doi: 10.3788/CJL202148.1315002
Su Mengqi, You Yang, Quan Zhao, et al. 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 2021, 48: 1315002 doi: 10.3788/CJL202148.1315002
|
[13] |
Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 2017, 42(17): 3255-3258. doi: 10.1364/OL.42.003255
|
[14] |
Michailovas A, Mikalauskas S, Regelskis K, et al. Method and device for combining laser beams: 2194426[P]. 2016-03-23.
|
[15] |
Želudevičius J, Regelskis K, Račiukaitis G. Experimental demonstration of pulse multiplexing and beam combining of four fiber lasers by noncollinear frequency conversion in an LBO crystal[J]. Optics Letters, 2017, 42(2): 175-178. doi: 10.1364/OL.42.000175
|
[16] |
Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 2019, 44(7): 1813-1816. doi: 10.1364/OL.44.001813
|
[17] |
Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of nonlinear optical crystals[M]. Berlin, Heidelberg: Springer, 1991.
|
[18] |
Avdokhin A V, Gapontsev V P, Grapov Y S. 170W continuous-wave single-frequency single-mode green fiber laser[C]//Proceedings of SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications. 2012.
|
[19] |
Carrion L, Girardeau-Montaut J P. Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm[J]. Applied Physics Letters, 2000, 77(8): 1074-1076. doi: 10.1063/1.1289501
|
[20] |
Alexandrovski A L, Foulon G, Myers L E, et al. UV and visible absorption in LiTaO3[C]//Proceedings of SPIE 3610, Laser Material Crystal Growth and Nonlinear Materials and Devices. 1999: 44-51.
|
[21] |
李小矛. 非线性光学晶体弱吸收及激光损伤研究[D]. 北京: 中国科学院理化技术研究所, 2013
Li Xiaomao. Research on the weak absorption and laser-induced damage of nonlinear optical crystals[D]. Beijing: Technical Institute of Physics and Chemistry, CAS, 2013
|
[22] |
Mühlig C. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique[C]//Proceedings of SPIE 8206, Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers. 2012: 82061I.
|
[1] | Yang Wenyuan, Dong Ye, Sun Huifang, Dong Zhiwei. Structure optimization and performance improvements of relativistic magnetron using all-cavity output and semi-transparent cathode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073001. doi: 10.11884/HPLPB202133.210098 |
[2] | Gong Yanfei, Hao Jianhong, Jiang Luxing. A time-domain method for the electromagnetic transient response of multiconductor transmission lines excited by the electromagnetic pulse[J]. High Power Laser and Particle Beams, 2019, 31(8): 083202. doi: 10.11884/HPLPB201931.180378 |
[3] | Zhang Hongwei, Liu Chaoyang, Yu Zhihua, Liu Honghua. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30(7): 073008. doi: 10.11884/HPLPB201830.170531 |
[4] | Wang Wenbing, Zhou Hui, Ma Liang, Cheng Yinhui, Liu Yifei, Guo Jinghai, Zhao Mo. Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method[J]. High Power Laser and Particle Beams, 2018, 30(7): 073205. doi: 10.11884/HPLPB201830.170475 |
[5] | Zhu Xiangqin, Wang Jianguo, Chen Weiqing, Chen Zaigao, Cai Libing. Method of fast estimating radiation near-field of flat-plate bounded wave electromagnetic pulse simulator with vertical polarization[J]. High Power Laser and Particle Beams, 2014, 26(11): 115005. doi: 10.11884/HPLPB201426.115005 |
[6] | Ling Junpu, He Juntao, Zhang Jiande, Cao Yibing, Zhang Zehai, Jiang Tao. Simulation study on passive compression using helically corrugated waveguide[J]. High Power Laser and Particle Beams, 2012, 24(03): 752-756. doi: 10.3788/HPLPB20122403.0752 |
[7] | Wang Yigang, Chen Bin, Shi Lihua, Xu Xianguo, Huang Congshun, . Three-dimensional calculation of internal electromagnetic pulse within metallic cavities of any shapes[J]. High Power Laser and Particle Beams, 2012, 24(05): 1141-1145. doi: 10.3788/HPLPB20122405.1141 |
[8] | Wang Huihui, Meng Lin, Liu Dagang, Yang Chao, Peng Kai. Conservational model for formation process of magnetic insulation[J]. High Power Laser and Particle Beams, 2012, 24(08): 2013-2016. doi: 10.3788/HPLPB20122408.2013 |
[9] | Liu Zongxin, Chen Yiwang, Xu Xin, Liu Yawen, Sun Xuegang, Zhang Shudi. Weakly conditionally stable 3-D FDTD method for periodic structures[J]. High Power Laser and Particle Beams, 2012, 24(11): 2687-2692. doi: 10.3788/HPLPB20122411.2687 |
[10] | zhu xiangqin, wang jianguo, wang yue, wang guangqiang, chen zaigao. Finite-difference time-domain method for near-to-far-field transformation in 2.5-dimensional simulation[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[11] | zhang lei, huang li, chen wei, hu lili. Analysis of incident light scattered by triangle crack on fused silica and Nd-doped phosphate glass surfaces[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[12] | wang yue, fu meiyan, chen zaigao, cai libing, xie haiyan, wang jianguo. Technique of complex geometry modeling and grid generation for fully electromagnetic particle simulation[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[13] | sun huifang, dong zhiwei. Simulative study on new coaxial slow-wave oscillator with low impedance[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[14] | chen zaigao, wang jianguo, zhang dianhui, wang yue, liu chunliang, li yongdong, wang hongguang, qiao hailiang, yuan yuan. Three-dimensional parallelized fully-electromagnetic particle simulation code UNIPIC-3D[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[15] | zhou ying-hui, shi li-hua, gao cheng. A time-domain method to calculate EMP coupling of buried cables based on transmission line model[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[16] | gao chun-xia, chen yu-sheng, wang liang-hou. Application of CPML to two-dimension numerical simulation of nuclear electromagnetic pulse from air explosions[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- . |
[17] | huang shou jiang, li fang. Time domain analysis of electromagnetic pulse propagation in magnetized plasma using Z transforms[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- . |
[18] | chen hai lin, chen bin, li zheng dong, yi yun, lu feng. Simulation of different electromagnetic pulse coupling to the finite cable near ground[J]. High Power Laser and Particle Beams, 2004, 16(10): 0- . |
[19] | luo gen xin, meng fen xia, tong chang jiang, wang jian guo. Numerical studies on coupling of ultrawide band electromagnetic pulse into mines[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- . |
[20] | liu shunkun, 1 fu junmei, cheng yusheng, 1 wang wenbing, z hou hui. NUMERICAL SIMULATION OF EMP EFFECTS ON BOOST FLYER[J]. High Power Laser and Particle Beams, 1999, 11(01): 0- . |