He Changjie, Zhang Wei, Ju Jinchuan, et al. Design of compact directional coupler for X-band relativistic triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 053004. doi: 10.11884/HPLPB202335.220370
Citation: He Changjie, Zhang Wei, Ju Jinchuan, et al. Design of compact directional coupler for X-band relativistic triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 053004. doi: 10.11884/HPLPB202335.220370

Design of compact directional coupler for X-band relativistic triaxial klystron amplifier

doi: 10.11884/HPLPB202335.220370
  • Received Date: 2022-10-23
  • Accepted Date: 2023-03-02
  • Rev Recd Date: 2023-03-02
  • Available Online: 2023-03-09
  • Publish Date: 2023-04-07
  • To realize the on-line measurement of power, frequency and phase of modular relativistic triaxial klystron amplifier, a compact directional coupler with high directivity and bandwidth is simulated and experimentally studied. Based on the theoretical analysis of the pinhole coupling theory and the phase superposition principle, a dual-hole compact directional coupler is designed. On this basis, the main and auxiliary waveguides are connected orthogonally, and the coupling holes are distributed along the axial and angular directions, which further shortens the length of the coupler. The parameters of the coupler are optimized by electromagnetic simulation. The simulation results show that when the center frequency is 10 GHz, the coupling degree of the ordinary dual-hole directional coupler to the TM01 mode is −60.68 dB, and the directivity is greater than 20 dB in the bandwidth of 250 MHz, and the coupling area length is 3.49 cm. The coupling degree of the improved directional coupler to the TM01 mode is −58.1 dB, and the directivity is greater than 20 dB in the bandwidth of 300 MHz. At this time, the length of the coupling zone is only 1.8 cm (about 0.6λ). The cold cavity experimental results of the coupler are in good agreement with the simulation results.
  • [1]
    Rostov V V, Elchaninov A A, Romanchenko I V, et al. A coherent two-channel source of Cherenkov superradiance pulses[J]. Applied Physics Letters, 2012, 100: 224102. doi: 10.1063/1.4723845
    [2]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Scientific Reports, 2016, 6: 30657. doi: 10.1038/srep30657
    [3]
    Zhang Wei, Ju Jinchuan, Zhang Jun, et al. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities[J]. Physics of Plasmas, 2017, 24: 123118. doi: 10.1063/1.5011057
    [4]
    孙钧, 胡咏梅, 张立刚, 等. 圆波导定向耦合器在高功率微波测量中的应用[J]. 强激光与粒子束, 2014, 26:063040 doi: 10.11884/HPLPB201426.063040

    Sun Jun, Hu Yongmei, Zhang Ligang, et al. Application of circular waveguide couplers in high power microwave measurement[J]. High Power Laser and Particle Beams, 2014, 26: 063040 doi: 10.11884/HPLPB201426.063040
    [5]
    曹乃胜, 罗勇, 王建勋. 圆波导-矩形波导小孔耦合定向耦合器设计[J]. 强激光与粒子束, 2008, 20(4):637-640

    Cao Naisheng, Luo Yong, Wang Jianxun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008, 20(4): 637-640
    [6]
    刘义. 高功率微波功率测量相关技术研究[D]. 长沙: 国防科技大学, 2010

    Liu Yi. Analysis of correlative technology on power measurement of high power microwave[D]. Changsha: National University of Defense Technology, 2010
    [7]
    刘国, 罗勇, 王建勋, 等. 高功率圆波导多孔阵列定向耦合器设计[J]. 强激光与粒子束, 2012, 24(2):417-422 doi: 10.3788/HPLPB20122402.0417

    Liu Guo, Luo Yong, Wang Jianxun, et al. Design of high power circular multi-aperture array directional coupler[J]. High Power Laser and Particle Beams, 2012, 24(2): 417-422 doi: 10.3788/HPLPB20122402.0417
    [8]
    白珍, 李国林, 张军. X波段高功率微波选模定向耦合器[J]. 强激光与粒子束, 2013, 25(7):1747-1750 doi: 10.3788/HPLPB20132507.1747

    Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(7): 1747-1750 doi: 10.3788/HPLPB20132507.1747
    [9]
    喻寄航, 宫玉彬, 王战亮, 等. X波段高功率宽带选模定向耦合器[J]. 强激光与粒子束, 2018, 30:023003 doi: 10.11884/HPLPB201830.170343

    Yu Jihang, Gong Yubin, Wang Zhanliang, et al. X-band high power broadband mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2018, 30: 023003 doi: 10.11884/HPLPB201830.170343
    [10]
    谢处方, 饶克谨. 电磁场与电磁波[M]. 4版. 北京: 高等教育出版社, 2006

    Xie Chufang, Rao Kejin. Electromagnetic field and electromagnetic wave[M]. 4th ed. Beijing: Higher Education Press, 2006
    [11]
    Wang Wenxiang, Gong Yubin, Yu Guofen, et al. Mode discriminator based on mode-selective coupling[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(1): 55-63. doi: 10.1109/TMTT.2002.806947
  • Relative Articles

    [1]Huang Hua, Li Shifeng, Sun Limin, Tan Jie, Wang Peng, Liu Zhenbang, Xiang Qifan. Longtime operation of S-band multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2022, 34(11): 113001. doi: 10.11884/HPLPB202234.220184
    [2]Ma Zhuang, Zhou Dongfang, Zhang Dewei, Zhang Yi, Lü Dalong. Dual-branch loaded L-band broadband high isolation directional coupler[J]. High Power Laser and Particle Beams, 2022, 34(4): 043002. doi: 10.11884/HPLPB202234.210289
    [3]Liu Zhenbang, Huang Hua, Jin Xiao, Li Shifeng, Wang Tengfang. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32(10): 103004. doi: 10.11884/HPLPB202032.200188
    [4]Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133
    [5]Yuan Huan, Liu Zhenbang, Huang Hua, Meng Fanbao, Chen Changhua. Phase characteristics of X-band multiple beams relativistic klystron driven by intense pulse electron beams[J]. High Power Laser and Particle Beams, 2017, 29(09): 093005. doi: 10.11884/HPLPB201729.170131
    [6]Lei Lurong, Huang Hua, He Hu, Liu Zhenbang, Yuan Huan, Huang Jijin. Design of high power span-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(03): 033018. doi: 10.11884/HPLPB201628.033018
    [7]Liu Zhenbang, Lei Lurong, Huang Hua, Jin Xiao, Zhu Lei, Wang Ganping, He Hu. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(03): 033002. doi: 10.11884/HPLPB201628.033002
    [8]Zhu Danni, Zhang Jun, Li Wei, Qi Zumin. Simulation study on high frequency characteristics of X-band high power relative klystron amplifier[J]. High Power Laser and Particle Beams, 2014, 26(02): 023006. doi: 10.3788/HPLPB201426.023006
    [9]Sun Jun, Hu Yongmei, Zhang Ligang, Teng Yan, Song Zhimin, Xiao Renzhen, Cao Yibing, Chen Changhua. Application of circular waveguide couplers in high power microwave measurement[J]. High Power Laser and Particle Beams, 2014, 26(06): 063040. doi: 10.11884/HPLPB201426.063040
    [10]Liu Guo, Luo Yong, Wang Jianxun, Pu YouLei. Design of high power circular multi-aperture array directional coupler[J]. High Power Laser and Particle Beams, 2012, 24(02): 417-422. doi: 10.3788/HPLPB20122402.0417
    [11]Chen Yongdong, Jin Xiao, Li Zhenghong, Wu Yang, Huang Hua. Theoretical design of 3 GW S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(09): 2151-2154. doi: 10.3788/HPLPB20122409.2151
    [12]shi aimin, wang xianwu, wen lianghua, feng yong. Directional coupler-based measurement of high-frequency power[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [13]huang hua, he hu, lei lurong, liu zhenbang, jin xiao, wang ganping, guo yanhua. Initial investigation on relativistic klystron amplifier driven by linear transformer driver[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [14]zhang zehai, shu ting, zhang jun, liu jing, bai xianchen. Three dimensional particle-in-cell simulation of L-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [15]zhang jianguo, meng lin, song gangyong, yu xinhua, gao wei. Particle simulation of X-band multi-frequency relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [16]guo yanhua, huang hua, luo xiong, zhang beizhen. Phase measurement of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- .
    [17]lei lu-rong, fan zhi-kai, huang hua, he hu. Three dimensional analysis and simulation of input cavity for S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [18]hu lin-lin, chen hong-bin, ma guo-wu, meng fan-bao, zhou chuan-ming. Design and preliminary experimental study of X-band short pulse relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [20]chen dai-bing, liu qing-xiang, he hu, su chang. Theoretical and experimental researches on the X-band five-unit transit-time tube oscillator[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.9 %FULLTEXT: 28.9 %META: 64.2 %META: 64.2 %PDF: 6.9 %PDF: 6.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.4 %其他: 6.4 %其他: 1.0 %其他: 1.0 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.8 %上海: 0.8 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.1 %九江: 0.1 %伊斯兰堡: 1.8 %伊斯兰堡: 1.8 %保定: 0.2 %保定: 0.2 %兰州: 0.4 %兰州: 0.4 %北京: 2.3 %北京: 2.3 %十堰: 0.3 %十堰: 0.3 %南京: 0.2 %南京: 0.2 %南宁: 0.1 %南宁: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %四平: 0.1 %四平: 0.1 %天津: 0.1 %天津: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.2 %宜春: 0.2 %布鲁塞尔: 0.3 %布鲁塞尔: 0.3 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %张家口: 2.1 %张家口: 2.1 %成都: 2.1 %成都: 2.1 %文昌: 0.1 %文昌: 0.1 %新德里: 0.1 %新德里: 0.1 %昆明: 1.1 %昆明: 1.1 %昌吉: 0.1 %昌吉: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.2 %海得拉巴: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 0.7 %湖州: 0.7 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %维沙卡帕特南: 0.1 %维沙卡帕特南: 0.1 %绵阳: 0.8 %绵阳: 0.8 %芒廷维尤: 35.8 %芒廷维尤: 35.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.4 %苏州: 0.4 %衡水: 0.3 %衡水: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 28.0 %西宁: 28.0 %西安: 1.1 %西安: 1.1 %诺沃克: 4.6 %诺沃克: 4.6 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.3 %遵义: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 1.0 %长沙: 1.0 %其他其他Seattle[]上海临汾丹东乌鲁木齐九江伊斯兰堡保定兰州北京十堰南京南宁博阿努瓦厦门台北台州哈尔滨哥伦布四平天津宜昌宜春布鲁塞尔常德广州张家口成都文昌新德里昆明昌吉晋城普洱杭州武汉沈阳济南海得拉巴温州湖州漯河石家庄秦皇岛维沙卡帕特南绵阳芒廷维尤芝加哥苏州衡水衢州西宁西安诺沃克贵阳费利蒙运城遵义重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (591) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return