Citation: | Zhang Ziqian, Li Bingjun, Li Yanfei. Detection method of accuracy of laser-electron-beam interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375 |
[1] |
Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
|
[2] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
|
[3] |
张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11):643-649
Zhang Jie. A new horizon high field physics[J]. Physics, 1997, 26(11): 643-649
|
[4] |
Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
|
[5] |
龚驰, 李子良, 李英骏. 强场下真空中粒子对产生的研究进展[J]. 强激光与粒子束, 2023, 35:012002 doi: 10.11884/HPLPB202335.220145
Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002 doi: 10.11884/HPLPB202335.220145
|
[6] |
Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 1951, 82: 664.
|
[7] |
Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
|
[8] |
Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
|
[9] |
Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
|
[10] |
Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
|
[11] |
Tamburini M. On-shot diagnostic of electron beam-laser pulse interaction based on stochastic quantum radiation reaction[DB/OL]. arXiv preprint arXiv: 2007.02841, 2020.
|
[12] |
Li Yanfei, Zhao Yongtao, Hatsagortsyan K Z, et al. Electron-angular-distribution reshaping in the quantum radiation-dominated regime[J]. Physical Review A, 2018, 98: 052120. doi: 10.1103/PhysRevA.98.052120
|
[13] |
Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
|
[14] |
Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
|
[15] |
Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 2022, 128: 174801. doi: 10.1103/PhysRevLett.128.174801
|
[16] |
Baier V N, Katkov V M, Strakhovenko V M. Electromagnetic processes at high energies in oriented single crystals[M]. Singapore: World Scientific, 1998.
|
[17] |
Salamin Y I, Mocken G R, Keitel C H. Electron scattering and acceleration by a tightly focused laser beam[J]. Physical Review Accelerators and Beams, 2022, 5: 101301.
|
[18] |
Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
|
[19] |
Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Transactions on Plasma Science, 1996, 24(2): 252-288. doi: 10.1109/27.509991
|
[20] |
Quesnel B, Mora P. Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum[J]. Physical Review E, 1998, 58: 3719. doi: 10.1103/PhysRevE.58.3719
|