Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhang Ziqian, Li Bingjun, Li Yanfei. Detection method of accuracy of laser-electron-beam interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375
Citation: Zhang Ziqian, Li Bingjun, Li Yanfei. Detection method of accuracy of laser-electron-beam interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375

Detection method of accuracy of laser-electron-beam interaction

doi: 10.11884/HPLPB202335.220375
  • Received Date: 2022-11-07
  • Rev Recd Date: 2022-12-07
  • Available Online: 2022-12-12
  • Publish Date: 2023-01-15
  • The interaction between an ultra-intense laser pulse and a relativistic electron beam is the main experimental method of strong-field quantum electrodynamics (QED). However, how to measure the accuracy of laser-electron-beam interaction, and then realize the accurate collision of micron precision, is a crucial reason limiting the development of strong-field QED experiments. Here, the dynamics of electrons and photons emitted during the interaction of an ultra-intense laser pulse and a relativistic electron beam is investigated via Monte Carlo numerical simulations. The correlation between the dynamics of electrons and emitted photons with the collision offset of laser pulse and electron beam is explored. Our simulations show that the spatial distribution information of emitted photons can effectively reflect the collision offset of the laser pulse and the electron beam. Based on the research results, the information of photon spatial distribution detected can be used to adjust the accuracy of laser- electron-beam interactions, which is expected to promote the development of strong field QED experimental technology.
  • loading
  • [1]
    Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
    [2]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [3]
    张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11):643-649

    Zhang Jie. A new horizon high field physics[J]. Physics, 1997, 26(11): 643-649
    [4]
    Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [5]
    龚驰, 李子良, 李英骏. 强场下真空中粒子对产生的研究进展[J]. 强激光与粒子束, 2023, 35:012002 doi: 10.11884/HPLPB202335.220145

    Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002 doi: 10.11884/HPLPB202335.220145
    [6]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 1951, 82: 664.
    [7]
    Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [8]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [9]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [10]
    Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [11]
    Tamburini M. On-shot diagnostic of electron beam-laser pulse interaction based on stochastic quantum radiation reaction[DB/OL]. arXiv preprint arXiv: 2007.02841, 2020.
    [12]
    Li Yanfei, Zhao Yongtao, Hatsagortsyan K Z, et al. Electron-angular-distribution reshaping in the quantum radiation-dominated regime[J]. Physical Review A, 2018, 98: 052120. doi: 10.1103/PhysRevA.98.052120
    [13]
    Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [14]
    Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [15]
    Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 2022, 128: 174801. doi: 10.1103/PhysRevLett.128.174801
    [16]
    Baier V N, Katkov V M, Strakhovenko V M. Electromagnetic processes at high energies in oriented single crystals[M]. Singapore: World Scientific, 1998.
    [17]
    Salamin Y I, Mocken G R, Keitel C H. Electron scattering and acceleration by a tightly focused laser beam[J]. Physical Review Accelerators and Beams, 2022, 5: 101301.
    [18]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [19]
    Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Transactions on Plasma Science, 1996, 24(2): 252-288. doi: 10.1109/27.509991
    [20]
    Quesnel B, Mora P. Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum[J]. Physical Review E, 1998, 58: 3719. doi: 10.1103/PhysRevE.58.3719
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (743) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return