Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical method for fast optimization of rectangular transition structure in folded waveguide devices[J]. High Power Laser and Particle Beams, 2015, 27: 053101. doi: 10.11884/HPLPB201527.053101
Citation: Fan Yinling, Lu Ping, Huang Kama. A planar split ring resonator antenna array fed by Chebyshev network[J]. High Power Laser and Particle Beams, 2023, 35: 053002. doi: 10.11884/HPLPB202335.220401

A planar split ring resonator antenna array fed by Chebyshev network

doi: 10.11884/HPLPB202335.220401
  • Received Date: 2022-11-29
  • Accepted Date: 2023-01-20
  • Rev Recd Date: 2023-01-18
  • Available Online: 2023-02-28
  • Publish Date: 2023-04-07
  • A 13×14 planar split ring resonator (SRR) antenna array with the Chebyshev feed network is proposed. This antenna array consists of antenna elements and a Chebyshev feed network. Based on the principle of the Yagi antenna, the radiating patch is designed as an antenna element of the director with the metal ground being the reflector. The radiating patch is composed of three SRRs, an I-shaped resonator and two circular monopoles to enhance the radiation capability of the antenna element and improves the antenna gain. The feed of the antenna element is composed of arc monopoles, which improves the flexibility of adjusting the impedance matching. Furthermore, the calculation of the current matrix is used to guide the design of the Chebyshev feed network, and the non-uniform current distribution is used to reduce the side lobes. Moreover, the antenna element substrate is vertically erected on the substrate of the feed network to reduce the aperture size of the array with the feed network. Finally, the antenna array achieves a high gain of 22.3 dBi and low sidelobe level of −16 dB and −17.66 dB in E-plane and H-respectively.
  • [1]
    Mailloux R J. Phased array antenna handbook[M]. 3rd ed. Boston: Artech House, 2017.
    [2]
    Munir A, Saputra Y P, Maulana Y Y. Experimental approach of X-band slotted microstrip patch antenna array with non-uniform current distribution[C]//Proceedings of 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). 2016: 764-767.
    [3]
    Varum T, Matos J N, Pinho P, et al. Nonuniform broadband circularly polarized antenna array for vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7219-7227. doi: 10.1109/TVT.2015.2500520
    [4]
    Kalva N, Kumar B M. Feed-line design for a series-fed binomial microstrip antenna array with no sidelobes[J]. IEEE Antennas and Wireless Propagation Letters, 2022: 3221662.
    [5]
    Cao Jie, Liu Yuanyun, Wang Yuejuan, et al. Design of a new microstrip antenna array with high gain and low side-lobe[C]//Proceedings of 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2018: 1-3.
    [6]
    Cao Weiping, Ma Lingzhi, Li Simin, et al. Conformal multi-beam directional array antenna[C]//Proceedings of the 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2016: 315-317.
    [7]
    Wu Wenjing, Guan Boran. Design and implementation of a X-band dual-polarization phased-array antenna[C]//Proceedings of the 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-4.
    [8]
    Khasim N S, Krishna Y M, Thati J, et al. Analysis of different tapering techniques for efficient radiation pattern[J]. e-Journal of Science & Technology, 2013, 8(5): 47-53.
    [9]
    Abed A T. Study of radiation properties in Taylor distribution uniform spaced backfire antenna arrays[J]. American Journal of Electromagnetics and Applications, 2014, 2(3): 23-26. doi: 10.11648/j.ajea.20140203.11
    [10]
    Saputra Y P, Oktafiani F, Wahyu Y, et al. Side lobe suppression for X-band array antenna using Dolph-Chebyshev power distribution[C]//Proceedings of the 22nd Asia-Pacific Conference on Communications (APCC). 2016: 86-89.
    [11]
    Toan T T, Tran N M, Giang T V B. A feeding network with Chebyshev distribution for designing low side-lobe level antenna arrays[J]. VNU Journal of Science: Computer Science and Communication Engineering, 2017, 33(1): 16-21.
    [12]
    Qian Jiawei, Zhu Haoran, Tang Min, et al. A 24 GHz Microstrip comb array antenna with high sidelobe suppression for radar sensor[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(7): 1220-1224. doi: 10.1109/LAWP.2021.3075887
    [13]
    Lee J H, Lee J M, Hwang K C, et al. Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(8): 1336-1339. doi: 10.1109/LAWP.2020.3001945
    [14]
    Afoakwa S, Jung Y B. Wideband microstrip comb-line linear array antenna using stubbed-element technique for high sidelobe suppression[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5190-5199. doi: 10.1109/TAP.2017.2741023
    [15]
    Chen Zhichao, Otto S. A taper optimization for pattern synthesis of microstrip series-fed patch array antennas[C]//Proceedings of 2009 European Wireless Technology Conference. 2009: 160-163.
    [16]
    Wahid M S A, Sreenivasan M, Rao P H. Design optmization of low sidelobe level microstrip array[C]//Proceedings of 2013 IEEE Applied Electromagnetics Conference (AEMC). 2013: 1-2.
    [17]
    Mahatmanto B P A, Apriono C. Planar microstrip array antenna with rectangular configuration fed with Chebyshev power distribution for C-band satellite application[C]//Proceedings of 2019 IEEE International Conference on Innovative Research and Development (ICIRD). 2019: 1-4.
    [18]
    Fang Cong, Su Ming, Liu Yuanan. A low side lobe level microstrip antenna array for 77 GHz automotive radar[C]//Proceedings of the IEEE 6th International Conference on Computer and Communications (ICCC). 2020: 448-452.
    [19]
    Zhang Yuwei, Lin Shu, Liu Ling, et al. The simulation design of a low-side lobe level high gain and broadband microstrip patch antenna array[C]//Proceedings of 2016 International Symposium on Antennas and Propagation (ISAP). 2016: 742-743.
    [20]
    Liu Lu, Lin Shu, Wang Jun, et al. Simulation and analysis of an X-band low sidelobe and high gain microstrip antenna array[C]//Proceedings of 2017 International Symposium on Antennas and Propagation (ISAP). 2017: 1-2.
    [21]
    Hong Jiasheng, Lancaster M J. Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters[J]. IEEE Transactions on Microwave theory and Techniques, 1996, 44(11): 2099-2109. doi: 10.1109/22.543968
  • Relative Articles

    [1]Qian Kun, Yang Junyan, Yu Yue, Zhao Dong, Rong Shenghui. Infrared target tracking based on selective convolution features[J]. High Power Laser and Particle Beams, 2019, 31(9): 093202. doi: 10.11884/HPLPB201931.190133
    [2]Cai Qing, Liu Huiying, Zhou Sanping, Sun Jingfeng. Adaptive level set model based on local and global intensity information for image segmentation[J]. High Power Laser and Particle Beams, 2017, 29(02): 021003. doi: 10.11884/HPLPB201729.160432
    [3]Qin Hanlin, Zeng Qingjie, Li Jia, Zhou Huixin, Yan Xiang, Han Jiaojiao, Lv Enlong. Low-contrast infrared image real-time enhancement based on singular value nonlinear correction[J]. High Power Laser and Particle Beams, 2015, 27(01): 011007. doi: 10.11884/HPLPB201527.011007
    [4]You Anqing, Wang Lei, Zhang Rong, Song Haifeng. Detecting approximately-circular object in image[J]. High Power Laser and Particle Beams, 2015, 27(12): 121004. doi: 10.11884/HPLPB201527.121004
    [5]Ling Qiang, Huang Shucai, Wu Xiao, Zhong Yu. Infrared small target detection based on kernel anisotropic diffusion[J]. High Power Laser and Particle Beams, 2015, 27(01): 011014. doi: 10.11884/HPLPB201527.011014
    [6]Qu Shiru, Yang Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(05): 051007. doi: 10.11884/HPLPB201527.051007
    [7]Wang Xiaoyang, Peng Zhenming, Zhang Ping, Meng Yeming. Infrared small dim target detection based on local contrast combined with region saliency[J]. High Power Laser and Particle Beams, 2015, 27(09): 091005. doi: 10.11884/HPLPB201527.091005
    [8]Wen Nu, Yang Shizhi, Cui Shengcheng, Cheng Wei. Adaptive dual-tree complex wavelet algorithm for remote sensing image restoration[J]. High Power Laser and Particle Beams, 2014, 26(10): 101003. doi: 10.11884/HPLPB201426.101003
    [9]Ma Ke, Peng Zhenming, He Yanmin, Gao Yuan, Zhang Ping. An improved method for dim infrared target detection with nonsubsampled Contourlet transform[J]. High Power Laser and Particle Beams, 2013, 25(11): 2811-2815. doi: 10.3788/HPLPB20132511.2811
    [10]Bai Honggang, Zhang Jianqi, Wang Xiaorui. Infrared complex background clutter suppression algorithm based on wave atom transform[J]. High Power Laser and Particle Beams, 2013, 25(01): 37-41. doi: 10.3788/HPLPB20132501.0037
    [11]Jing Liang, Peng Zhenming, He Yanmin, Pu Tian. Infrared dim target detection based on anisotropic SUSAN filtering[J]. High Power Laser and Particle Beams, 2013, 25(09): 2208-2212. doi: 10.3788/HPLPB20132509.2208
    [12]Qin Hanlin, Huang Yang, Yao Keke, Zhou Huixin, Liu ShangQian. Multi-scale kernel local normalization for infrared image background suppression[J]. High Power Laser and Particle Beams, 2012, 24(05): 1063-1066. doi: 10.3788/HPLPB20122405.1063
    [13]huang yonglin, ye yutang, qiao naosheng, chen zhenlong. Infrared image segmentation based on fast fuzzy C-means clustering[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [14]zhang libao, li dongling, yu xianchuan, wang pengfei, cai lei. Region-of-interest image edge detection based on histogram[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [15]li fan, liu shangqian, hong ming, qin hanlin. Algorithm of infrared image segmentation based on ant colony[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [16]chi fangting, li bo, liu yiyang, chen sufen, jiang bo. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [17]qin hanlin, zhou huixin, liu shangqian, li fan. Dim and small target background suppression using bilateral filtering[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [18]liu chang-song, yan gao-shi, cai jian-rong. A new search algorithm for fast block-matching motion estimation[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [19]fang liang, lu jia-jia, ye yu-tang, yang xian-ming, cheng zhi-qiang. New method for edge detection of infrared images based on Mumford-Shah model[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [20]cheng yong-dong, li jia-yin. Study on microwave self-adapting equalizer for amplifier of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(3)

    1. 潘强,印鉴. 基于权重约束决策的图像增强算法. 控制工程. 2018(11): 2017-2021 .
    2. 王新赛,周丰俊,郑磊,贺菁. 红外成像技术在城市地下空间防灾监测与应急搜救中的应用发展对策. 中国工程科学. 2017(06): 92-99 .
    3. 秦翰林,曾庆杰,李佳,周慧鑫,延翔,韩姣姣,吕恩龙. 奇异值非线性修正的低对比度红外图像实时增强. 强激光与粒子束. 2015(01): 59-62 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (947) PDF downloads(100) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return