Chen Zhiqiang, Jia Wei, He Xiaoping, et al. Double peak phenomenon of applied pulse voltage induced by flashover around parallel-plate electrodes[J]. High Power Laser and Particle Beams, 2019, 31: 070005. doi: 10.11884/HPLPB201931.180383
Citation: Wang Shanshan, Shi Feng, Qiao Shuo, et al. Error-sensitive factors analysis and verification for optical element in-situ measurement device based on phase measuring deflectometry[J]. High Power Laser and Particle Beams, 2023, 35: 091002. doi: 10.11884/HPLPB202335.220405

Error-sensitive factors analysis and verification for optical element in-situ measurement device based on phase measuring deflectometry

doi: 10.11884/HPLPB202335.220405
  • Received Date: 2022-11-30
  • Accepted Date: 2023-05-27
  • Rev Recd Date: 2023-05-23
  • Available Online: 2023-07-13
  • Publish Date: 2023-09-01
  • Based on optical element’s high precision in-situ measurement requirements, this paper carries out the sensitive factor simulation analysis, studies the influence of systematic structural errors and temperature errors on the measurement results, and designs and builds an in-situ measurement device to carry out measurement experiments of system temperature change, system repeatability and system stability. The results show that the simulation detection model can be used for plane/spherical/aspherical/free surface, the influence on the measurement results is mainly reflected in the low frequency error, the high frequency error is relatively small, the maximum PV value of the measurement surface shape error does not exceed 68nm (about λ/10), and the maximum RMS value does not exceed 15 nm (about λ/40).
  • [1]
    张梦瑶, 田爱玲, 王大森, 等. 基于逆向优化策略的面形绝对检测平移量研究[J]. 中国激光, 2022, 49:1804003 doi: 10.3788/CJL202249.1804003

    Zhang Mengyao, Tian Ailing, Wang Dasen, et al. Translation of surface shape absolute testing based on reverse optimization strategy[J]. Chinese Journal of Lasers, 2022, 49: 1804003 doi: 10.3788/CJL202249.1804003
    [2]
    侯溪, 张帅, 胡小川, 等. 超高精度面形干涉检测技术进展[J]. 光电工程, 2020, 47:200209

    Hou Xi, Zhang Shuai, Hu Xiaochuan, et al. The research progress of surface interferometric measurement with higher accuracy[J]. Opto-Electronic Engineering, 2020, 47: 200209
    [3]
    Ye Meitu, Liang Jin, Li Leigang, et al. Simultaneous measurement of external and internal surface shape and deformation based on photogrammetry and stereo-DIC[J]. Optics and Lasers in Engineering, 2022, 158: 107179. doi: 10.1016/j.optlaseng.2022.107179
    [4]
    Su Peng, Wang Yuhao, Burge J H, et al. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach[J]. Optics Express, 2012, 20(11): 12393-12406. doi: 10.1364/OE.20.012393
    [5]
    Berger G, Petter J. Non-contact metrology of aspheric surfaces based on MWLI technology[C]//Proceedings of SPIE 8884, Optifab 2013. 2013: 88840V.
    [6]
    Anderson D S, Burge J H. Swing-arm profilometry of aspherics[C]//Proceedings of SPIE 2536, Optical Manufacturing and Testing. 1995: 169-179.
    [7]
    Wan Xinjun, Bin Boyi, Xie Shuping, et al. Development of an integrated freeform optics measurement system based on phase measuring deflectometry[C]//Proceedings of SPIE 10847, Optical Precision Manufacturing, Testing, and Applications. 2018: 1084710.
    [8]
    Guo Chunfeng, Hu Anduo. Three-dimensional shape measurement of aspheric mirrors with null phase measuring deflectometry[J]. Optical Engineering, 2019, 58: 104102.
    [9]
    Chaudhuri R, Papa J, Rolland J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 2019, 44(8): 2000-2003. doi: 10.1364/OL.44.002000
    [10]
    Fang Fengzhou, Zhang Xiaodong, Weckenmann A, et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 2013, 62(2): 823-846. doi: 10.1016/j.cirp.2013.05.003
    [11]
    Lei Huang, Idir M, Zuo Chao, et al. Comparison of two-dimensional integration methods for shape reconstruction from gradient data[J]. Optics and Lasers in Engineering, 2015, 64: 1-11. doi: 10.1016/j.optlaseng.2014.07.002
    [12]
    Xu Yongjia, Gao Feng, Jiang Xiangqian. Enhancement of measurement accuracy of optical stereo deflectometry based on imaging model analysis[J]. Optics and Lasers in Engineering, 2018, 111: 1-7. doi: 10.1016/j.optlaseng.2018.07.007
    [13]
    Huang Lei, Ng C, Asundi A K. Dynamic 3D measurement for specular reflecting surface with monoscopic fringe reflection deflectometry[C]//Proceedings of the Computational Optical Sensing and Imaging 2011. 2011: CWC3.
    [14]
    Song Lei, Yue Huimin, Kim H, et al. A study on carrier phase distortion in phase measuring deflectometry with non-telecentric imaging[J]. Optics Express, 2012, 20(22): 24505-24515. doi: 10.1364/OE.20.024505
    [15]
    阮一郎, 李大海, 余林治, 等. 基于相位测量偏折术的成像透镜轴外点波像差测量[J]. 中国激光, 2022, 49:2104003 doi: 10.3788/CJL202249.2104003

    Ruan Yilang, Li Dahai, Yu Linzhi, et al. Off-axis point wave aberration testing for imaging lens based on phase measuring deflectometry[J]. Chinese Journal of Lasers, 2022, 49: 2104003 doi: 10.3788/CJL202249.2104003
    [16]
    陈贞屹, 赵文川, 张启灿, 等. 基于立体相位测量偏折术的预应力薄镜面形检测[J]. 光电工程, 2020, 47:190435

    Chen Zhenyi, Zhao Wenchuan, Zhang Qican, et al. Shape measurement of stressed mirror based on stereoscopic phase measuring deflectometry[J]. Opto-Electronic Engineering, 2020, 47: 190435
    [17]
    Su Peng, Khreishi M, Huang Run, et al. Precision aspheric optics testing with SCOTS: a deflectometry approach[C]//Proceedings of SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII. 2013: 87881E.
    [18]
    Faber C, Olesch E, Krobot R, et al. Deflectometry challenges interferometry: the competition gets tougher![C]//Proceedings of SPIE 8493, Interferometry XVI: Techniques and Analysis. 2012: 84930R.
    [19]
    冯婕, 白瑜, 邢廷文. Zernike多项式波面拟合精度研究[J]. 光电技术应用, 2011, 26(2):31-34 doi: 10.3969/j.issn.1673-1255.2011.02.009

    Feng Jie, Bai Yu, Xing Tingwen. Fitting accuracy of wavefront using Zernike polynomials[J]. Electro-Optic Technology Application, 2011, 26(2): 31-34 doi: 10.3969/j.issn.1673-1255.2011.02.009
  • Relative Articles

    [1]Wang Zhenchun, Hu Yan, Zhang Yuting. Circuit topology optimization and performance improvement of magnetic resistance coil launcher[J]. High Power Laser and Particle Beams, 2024, 36(9): 095002. doi: 10.11884/HPLPB202436.240123
    [2]Zhao Yunru, Wang Quanfeng, Wu Qi. Statistical analysis on electromagnetic emission characteristics of phased array antenna[J]. High Power Laser and Particle Beams, 2021, 33(12): 123003. doi: 10.11884/HPLPB202133.210389
    [3]Lian Zhongmou, Feng Gang, Tong Siyuan, Cheng Junsheng, Xiong Ling. Simulation analysis of background field enhancement of four-rail electromagnetic launcher[J]. High Power Laser and Particle Beams, 2020, 32(10): 105003. doi: 10.11884/HPLPB202032.200135
    [4]Lin Lingshu, Yuan Weiqun, Zhao Ying, Wang Zhizeng, Yan Ping. Mechanical design of rail cooling pipe for electromagnetic launcher[J]. High Power Laser and Particle Beams, 2018, 30(2): 025003. doi: 10.11884/HPLPB201830.170322
    [5]Zhao Ying, Yuan Weiqun, Xu Rong, Cheng Wenping, Che Yunlong, Xie Keyu, Yan Ping. Characteristics of the bus-bar of electromagnetic rail launcher[J]. High Power Laser and Particle Beams, 2018, 30(5): 055004. doi: 10.11884/HPLPB201830.170411
    [6]Lin Lingshu, Yuan Weiqun, Zhao Ying, Wang Zhizeng, Yan Ping. Scaling method on electromagnetic railgun[J]. High Power Laser and Particle Beams, 2016, 28(01): 015007. doi: 10.11884/HPLPB201628.015007
    [7]He Yong, Cheng Cheng, Song Shengyi, Guan Yongchao, Gao Guishan, Li Yexun, Qiu Xu. Suppressing of muzzle arc during railgun launch[J]. High Power Laser and Particle Beams, 2016, 28(02): 025003. doi: 10.11884/HPLPB201628.025003
    [8]Yin Qiang, Zhang He, Li Haojie, Shi Yunlei. Analysis of railgun in-bore magnetic field distribution at zero speed[J]. High Power Laser and Particle Beams, 2016, 28(02): 025008. doi: 10.11884/HPLPB201628.025008
    [9]Zhao Shen, Zou Xiaobing, Zhu Xinlei, Shi Huantong, Luo Haiyun, Wang Xinxin. Current distribution in load cavity between X-pinches and current-return rods[J]. High Power Laser and Particle Beams, 2014, 26(04): 045045. doi: 10.11884/HPLPB201426.045045
    [10]Guan Yongchao, Zou Wenkang, He Yong, Li Yexun, Qiu Xu, Gao Guishan, Cheng Cheng, Song Shengyi. Circuit simulation of the electromagnetic railgun system[J]. High Power Laser and Particle Beams, 2014, 26(11): 115001. doi: 10.11884/HPLPB201426.115001
    [11]Xu Weidong, Chen Yun, Yuan Weiqun, Zhao Ying, Wang Xianbin, Yan Ping. Design of armature with high muzzle velocity in the small caliber electromagnetic launcher[J]. High Power Laser and Particle Beams, 2014, 26(04): 045040. doi: 10.11884/HPLPB201426.045040
    [12]Zhu Rengui, Li Zhiyuan, Zhang Qian, Wang Ruilin, Xing Yanchang. Initial contact status for interface between armature and rail in electromagnetic launch[J]. High Power Laser and Particle Beams, 2014, 26(11): 115003. doi: 10.11884/HPLPB201426.115003
    [13]Guan Xiaocun, Lu Junyong. Transient wear capacity calculation of armature-rail interface in pulse current[J]. High Power Laser and Particle Beams, 2014, 26(11): 115002. doi: 10.11884/HPLPB201426.115002
    [14]Zhao Ying, Xu Rong, Yuan Weiqun, Yan Ping, Xu Weidong, Xie Keyu, Wang Xianbin. Characteristics of high pulsed current electromagnetic rail launcher[J]. High Power Laser and Particle Beams, 2014, 26(09): 095004. doi: 10.11884/HPLPB201426.095004
    [15]Guan YonGchao, Ji Ce, Wei BinG, Qiu Xu, He YonG, SonG ShenGyi. Isolated voltage divider for electromagneticrail launcher[J]. High Power Laser and Particle Beams, 2012, 24(04): 793-796. doi: 10.3788/HPLPB20122404.0793
    [16]yang ye, liu yun, qin li, wang ye, liang xuemei, li zaijin, hu liming, shi jingjing, wang chao, wang lijun. Design of 808 nm high power diode laser bars[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [17]sun peng, lei bin, li zhiyuan, guo chunlong. Finite element analysis on 3-D electromagnetic field of electromagnetic launching composite intercepting projectile[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [18]wang qiang, guan yongchao, wang ganghua, xie long, jiang jihao. 3D finite element numerical calculation of C-shaped solid armatures in electromagnetic launch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [19]dong zhiwei, yu cuiying, zhao qiang, yang xianjun, xu fukai, wang guirong. Numerical study of impact of resistance and flux losses on helical magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 李学生,张尊扬. 基于贝叶斯分类的变压器绕组故障诊断算法. 济南大学学报(自然科学版). 2021(04): 412-416 .
    2. 陈志强,贾伟,谢霖燊,郭帆,王程程,何小平,吴伟,汲胜昌. 圆形平板电极与薄膜层叠结构的沿面闪络性能. 强激光与粒子束. 2020(02): 97-103 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 75.7 %META: 75.7 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %其他: 0.1 %其他: 0.1 %China: 0.9 %China: 0.9 %India: 0.1 %India: 0.1 %Pakistan: 0.2 %Pakistan: 0.2 %Puylaurens: 0.2 %Puylaurens: 0.2 %Ukraine: 0.2 %Ukraine: 0.2 %[]: 0.4 %[]: 0.4 %上海: 0.6 %上海: 0.6 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %利佛摩: 0.1 %利佛摩: 0.1 %北京: 15.5 %北京: 15.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %印多尔: 0.1 %印多尔: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 0.8 %哈尔科夫: 0.8 %哥伦布: 0.1 %哥伦布: 0.1 %孟买: 0.1 %孟买: 0.1 %广州: 0.2 %广州: 0.2 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 0.5 %张家口: 0.5 %成都: 0.3 %成都: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.5 %昆明: 0.5 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.1 %格兰特县: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 10.4 %芒廷维尤: 10.4 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %西宁: 60.2 %西宁: 60.2 %西安: 1.0 %西安: 1.0 %西雅图: 0.1 %西雅图: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.1 %重庆: 0.1 %长沙: 0.2 %长沙: 0.2 %阳泉: 0.2 %阳泉: 0.2 %其他其他ChinaIndiaPakistanPuylaurensUkraine[]上海中山丹东六安利佛摩北京十堰南京印多尔台北台州咸阳哈尔滨哈尔科夫哥伦布孟买广州弗吉尼亚州张家口成都无锡昆明杭州格兰特县桃园武汉济南深圳湖州漯河石家庄秦皇岛绵阳芒廷维尤芜湖芝加哥苏州西宁西安西雅图运城郑州重庆长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article views (589) PDF downloads(74) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return