Li Xin. Laser ray-tracing phenomenal model at far field[J]. High Power Laser and Particle Beams, 2015, 27: 032003. doi: 10.11884/HPLPB201527.032003
Citation: Zhao Hengwei, Tao Tao, Yuan Peng, et al. Optimization algorithm for compound filter parameters of flat response X-ray diode[J]. High Power Laser and Particle Beams, 2023, 35: 092003. doi: 10.11884/HPLPB202335.220406

Optimization algorithm for compound filter parameters of flat response X-ray diode

doi: 10.11884/HPLPB202335.220406
  • Received Date: 2022-12-25
  • Accepted Date: 2023-05-22
  • Rev Recd Date: 2023-06-22
  • Available Online: 2023-07-01
  • Publish Date: 2023-09-15
  • In the study of indirectly driven laser fusion, the flat response X-ray diode is the main detector for the measurement of X-ray radiation energy flux. To obtain ideal flat response effect, it usually costs a lot of time to optimize the composite filter parameters of the detector. In this paper, the particle swarm optimization algorithm is developed and applied to optimize the parameters of compound filter of flat response X-ray diode. Compared with the previous work, the method developed in this paper can get the optimized parameters of composite filter more quickly and accurately. On this basis, this paper proposes a new filter combination mode, optimizes its flat response characteristics, and obtains a better parameter ratio than the traditional filter combination. The work in this paper provides a more efficient method for searching the parameters of the composite filter of the response X-ray diode
  • [1]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2]
    Dewald E L, Glenzer S H, Landen O L, et al. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2005, 47: B405. doi: 10.1088/0741-3335/47/12B/S29
    [3]
    Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
    [4]
    汪志诚. 热力学·统计物理[M]. 5版. 北京: 高等教育出版社, 2013

    Wang Zhicheng. Thermodynamics·statistical physics[M]. 5th ed. Beijing: Higher Education Press, 2013
    [5]
    Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign Hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
    [6]
    Betti R, Chang Poyu, Spears B K, et al. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement[J]. Physics of Plasmas, 2010, 17: 058102. doi: 10.1063/1.3380857
    [7]
    Dewald E L, Suter L J, Landen O L, et al. Radiation-driven hydrodynamics of high-Z hohlraums on the National Ignition Facility[J]. Physical Review Letters, 2005, 95: 215004. doi: 10.1103/PhysRevLett.95.215004
    [8]
    Li Zhichao, Jiang Xiaohua, Liu Shenye, et al. A novel flat-response X-ray detector in the photon energy range of 0.1-4 keV[J]. Review of Scientific Instruments, 2010, 81: 073504. doi: 10.1063/1.3460269
    [9]
    Kornblum H N, Slivinsky V W. Flat-response, subkiloelectronvolt X-ray detector with a subnanosecond time response[J]. Review of Scientific Instruments, 1978, 49(8): 1204-1205. doi: 10.1063/1.1135548
    [10]
    Clery D. Fusion's great bright hope. Science, 2009, 324(5925): 326-330.
    [11]
    Li Zhichao, Zhu Xiaoli, Jiang Xiaohua, et al. Note: Continuing improvements on the novel flat-response X-ray detector[J]. Review of Scientific Instruments, 2011, 82: 106106. doi: 10.1063/1.3657158
    [12]
    车兴森, 侯立飞, 杨轶濛, 等. 用于平响应X光探测器的复合滤片参数优化[J]. 红外与激光工程, 2017, 46:1017008 doi: 10.3788/IRLA201746.1017008

    Che Xingsen, Hou Lifei, Yang Yimeng, et al. Parameter optimization of compound filters applied for flat-response X-ray detectors[J]. Infrared and Laser Engineering, 2017, 46: 1017008 doi: 10.3788/IRLA201746.1017008
    [13]
    Guo Liang, Li Sanwei, Zheng Jian, et al. A compact flat-response X-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV[J]. Measurement Science and Technology, 2012, 23: 065902. doi: 10.1088/0957-0233/23/6/065902
    [14]
    郭亮. 空腔M带X光辐射能流研究[D]. 合肥: 中国科学技术大学, 2012

    Guo Liang. The precise measurement and modeling of M-band radiation flux from void hohlraums[D]. Hefei: University of Science and Technology of China, 2012
    [15]
    Bentley C D, Simmons A C. Spectral response calibrations of X-ray diode photocathodes in the 50-5900 eV photon energy region[J]. Review of Scientific Instruments, 2001, 72(1): 1202-1204. doi: 10.1063/1.1322622
    [16]
    郑志坚, 丁永坤, 丁耀南, 等. 激光惯性约束聚变综合诊断系统[J]. 强激光与粒子束, 2003, 15(11):1073-1078

    Zheng Zhijian, Ding Yongkun, Ding Yaonan, et al. Recent progress and application of diagnostic technique in laser fusion[J]. High Power Laser and Particle Beams, 2003, 15(11): 1073-1078
    [17]
    Henke B L, Knauer J P, Premaratne K. The characterization of X-ray photocathodes in the 0.1-10-keV photon energy region[J]. Journal of Applied Physics, 1981, 52(3): 1509-1520. doi: 10.1063/1.329789
    [18]
    Henke B L, Smith J A, Attwood D T. 0.1-10-keV X-ray-induced electron emissions from solids—Models and secondary electron measurements[J]. Journal of Applied Physics, 1977, 48(5): 1852-1866. doi: 10.1063/1.323938
    [19]
    Henke B L, Lee P, Tanaka T J, et al. Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection: E= 100-2000 eV Z= 1-94[J]. Atomic Data and Nuclear Data Tables, 1982, 27(1): 1-144. doi: 10.1016/0092-640X(82)90002-X
    [20]
    Shi Yuhui, Eberhart R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Anchorage: IEEE, 1998: 69-73.
    [21]
    王传珂, 李晋, 杨鸣, 等. 平响应X射线光阴极的理论设计与计算模拟[J]. 光子学报, 2017, 46:0523001 doi: 10.3788/gzxb20174605.0523001

    Wang Chuanke, Li Jin, Yang Ming, et al. Theoretical design and numerical simulation of flat response X-ray photocathode[J]. Acta Photonica Sinica, 2017, 46: 0523001 doi: 10.3788/gzxb20174605.0523001
    [22]
    Del Río M S, Dejus R J. XOP v2.4: recent developments of the X-ray optics software toolkit[C]//Proceedings of SPIE 8141, Advances in Computational Methods for X-Ray Optics II. 2011: 814115.
    [23]
    Del Rio M S. Advances in computational methods for X-ray and neutron optics[C]//Proceedings of SPIE 8141, Advances in Computational Methods for X-Ray Optics II. 2004: 814101.
    [24]
    张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004

    Zhang Xianda. Matrix analysis and application[M]. Beijing: Tsinghua University Press, 2004
  • Relative Articles

    [1]Zhang Tianyang, Huang Tao, Cong Peitian, Luo Weixi, Yin Jiahui, Zhai Rongxiao. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36(11): 115015. doi: 10.11884/HPLPB202436.240291
    [2]Lu Honglin, Wu Xinjie, Zhang Debin, Qu Chengzhi, Zhang Zhongsong, Zhang Yu. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36(2): 025021. doi: 10.11884/HPLPB202436.230171
    [3]Xie Xiangyu, Wang Peng, Deng Ying, Zhou Kainan, Feng Guoying. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35(5): 059002. doi: 10.11884/HPLPB202335.220396
    [4]Rong Fan, Zhong Longquan, Liu Qiang, Yan Liping, Zhao Xiang. Modeling and statistical analysis of distribution parameters of random cable bundles based on image recognition technology[J]. High Power Laser and Particle Beams, 2021, 33(5): 053002. doi: 10.11884/HPLPB202133.210007
    [5]Shen Yi, Zhang Huang, Liu Yi, Wang Wei, Ye Mao, Xia Liansheng, Shi Jinshui, Zhang Linwen, Deng Jianjun. Circuit coupling and decoupling between accelerating units of dielectric wall linear accelerator[J]. High Power Laser and Particle Beams, 2016, 28(04): 045003. doi: 10.11884/HPLPB201628.125003
    [6]Luo Shiwen, Zuo Duluo, Wang Xinbing. Kinetic simulation of discharge excited ArF excimer laser and parameter analysis[J]. High Power Laser and Particle Beams, 2015, 27(08): 081006. doi: 10.11884/HPLPB201527.081006
    [7]Huang Yanhua, Song Chengwei, Zhang Junjie, Sun Tao. Molecular dynamics modelling and simulating of femtosecond laser ablation of polymers[J]. High Power Laser and Particle Beams, 2014, 26(12): 124102. doi: 10.11884/HPLPB201426.124102
    [8]Cui Ding, Su Youbin, Cui Yunjun, Xian Yuqiang, Zhang Wei. Hybrid modeling method based on solid element and shell element in microwave structure[J]. High Power Laser and Particle Beams, 2013, 25(S0): 106-110.
    [9]Hao Qingsong, Ding ZHenjie, Fan Juping, Yu Jianguo, Yuan Xuelin, Pan Yafeng, Hu Long, Fang Xu, Wang Gang, Su Jiancang. Design of primary unit of high repetition frequency pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2479-2482. doi: 10.3788/HPLPB20122410.2479
    [10]Zhang Xianpeng, Zhang Mei, Sheng Liang, Ouyang Xiaoping. Simulation research of neutron scatter camera with five units[J]. High Power Laser and Particle Beams, 2012, 24(10): 2464-2468. doi: 10.3788/HPLPB20122410.2464
    [11]Chen Shaowu, Zhang Jianmin, Yuwen Cuilei, Feng Gang. 中红外高能激光探测单元[J]. High Power Laser and Particle Beams, 2012, 24(06): 1306-1310. doi: 10.3788/HPLPB20122406.1306
    [12]Wang Qingfeng, Liu Qingxiang, Li Xiangqiang, Zhang Zhengquan, Xu Yuancan, Hu Kesong. Double-cell experimental study of linear transformer drivers[J]. High Power Laser and Particle Beams, 2012, 24(04): 789-792. doi: 10.3788/HPLPB20122404.0789
    [13]he dayong, chi yunlong, . Design and multi-cell test of Marx solid-state modulator[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]he dayong, chi yunlong, . Marx solid-stage modulator cell for International Linear Collider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]chen minsun, jiang houman, liu zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [16]yang peng-ling, feng guo-bin, wang qun-shu, yan yan, cheng jian-ping. Design and implement of detecting module for mid-infrared laser power density measurement[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [17]li zhi-hui, ratzinger u. Optimization of room temperature CH-cavity with cell-cavity approximation[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [18]xia ming-he, li hong-tao, yao bin, feng shu-ping, wang yu-juan, meng wei-tao, wei bing, he an, ji ce, tian qing, fu zhen, ding sheng, ren jing, qing yan-ling, xie wei-ping. Investigation of pulse forming line section of pulse power machine[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [19]tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [20]yu hai-jun, shi jin-shui. Dynamics behavior of backstreaming ions[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 程显,夏荣翔,葛国伟,连昊宇,吕彦鹏,陈硕. 基于感应叠加原理的模块化脉冲电源的研制. 高电压技术. 2021(03): 778-785 .
    2. 马剑豪,何映江,余亮,董守龙,姚陈果. 应用于模块化高压纳秒脉冲源的SiC与射频Si基MOSFET瞬态开关特性对比研究. 中国电机工程学报. 2020(06): 1817-1829 .
    3. 吴兆康,陈希有,牟宪民,吴茂鹏. 基于多变压器的双极性Marx电路. 电工电能新技术. 2020(11): 59-65 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 68.7 %META: 68.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 1.7 %上海: 1.7 %东莞: 0.0 %东莞: 0.0 %东营: 0.0 %东营: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %休斯敦: 0.0 %休斯敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兴安盟: 0.1 %兴安盟: 0.1 %北京: 19.1 %北京: 19.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.2 %嘉义: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %布达佩斯: 0.0 %布达佩斯: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.4 %成都: 0.4 %扬州: 0.2 %扬州: 0.2 %文昌: 0.0 %文昌: 0.0 %斯特灵: 0.0 %斯特灵: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.0 %昆明: 0.0 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杜伊斯堡: 0.0 %杜伊斯堡: 0.0 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %海口: 0.0 %海口: 0.0 %深圳: 0.1 %深圳: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %漯河: 0.2 %漯河: 0.2 %瓜达拉哈拉: 0.1 %瓜达拉哈拉: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.3 %苏州: 0.3 %莱芜: 0.2 %莱芜: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 40.9 %西宁: 40.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.0 %长治: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东莞东营中山临汾丹东休斯敦佛山保定兴安盟北京十堰南京博阿努瓦厦门台州合肥吕梁呼和浩特哥伦布嘉义大连天津安康宣城岳阳布达佩斯常州广州张家口惠州成都扬州文昌斯特灵新乡昆明晋城普洱杜伊斯堡杭州武汉沈阳济南海口深圳温州湖州漯河瓜达拉哈拉石家庄秦皇岛绵阳芒廷维尤芝加哥苏州莱芜衢州西宁西安贵阳运城邯郸郑州重庆金华镇江长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (631) PDF downloads(55) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return