Bao Yu, He Xiang, Chen Jianping, et al. Effect of plasma on transmission characteristics of high-frequency microwave[J]. High Power Laser and Particle Beams, 2025, 37: 013003. doi: 10.11884/HPLPB202537.240296
Citation: Wang Biyi, Zhao Wanli, Xiang Xia, et al. A theoretical study on intense laser induced damage of monocrystalline silicon by absorption front model[J]. High Power Laser and Particle Beams, 2023, 35: 071004. doi: 10.11884/HPLPB202335.220407

A theoretical study on intense laser induced damage of monocrystalline silicon by absorption front model

doi: 10.11884/HPLPB202335.220407
  • Received Date: 2022-12-28
  • Accepted Date: 2023-02-27
  • Rev Recd Date: 2023-03-22
  • Available Online: 2023-04-10
  • Publish Date: 2023-06-15
  • The absorption front model for laser induced damage of optical materials is modified. Different from the original model, the impurity defect absorption term is introduced, and the one-dimensional model is extended to a three-dimensional model. Using the modified absorption front model, temperature distribution near impurity(taking metal iron as an example), damage radius and damage threshold of infrared optical material of monocrystalline silicon are numerically studied, which is irradiated by 1064nm picosecond laser. The influence of initial temperature of the optical material on damage threshold is also studied. Our results show that: (1) Different from the traditional heat thermal transport models, near the damage threshold, a small change of laser field energy density from below to equal to or beyond damage threshold leads to a great change of temperature field in the presently modified absorption front model; (2) The maximum temperature near impurity and damage radius characterized by the absorption front increase approximately linearly with the increase of the irradiation energy density as the laser energy density goes far beyond damage threshold; (3) The laser damage threshold decreases with the increase of the initial temperature of the material. Our results prove that the presently modified absorption front model can better describe the laser damage induced by impurity defects in optical materials. Compared with the traditional thermal transport models, the present absorption front model can represent the sudden change of temperature field near the damage threshold more reasonably, and can quantitatively analyze laser damage size of optical materials induced by impurities. In addition, our results also show that increasing the initial temperature of the material can effectively reduce its laser damage threshold, which provides a way to improve the laser damage efficiency of photodetectors in photoelectric countermeasures.
  • [1]
    王东, 王非, 白冰, 等. 10.6μm脉冲激光对多晶硅探测器干扰损伤实验[J]. 激光与红外, 2015, 45(9):1084-1087 doi: 10.3969/j.issn.1001-5078.2015.09.016

    Wang Dong, Wang Fei, Bai Bing, et al. Experiment study on the jamming and damage thresholds of polycrystalline silicon detector irradiated by 10.6 μm pulsed CO2 laser[J]. Laser & Infrared, 2015, 45(9): 1084-1087 doi: 10.3969/j.issn.1001-5078.2015.09.016
    [2]
    栗兴良, 牛春晖, 马牧燕, 等. 单脉冲激光损伤CCD探测器的有限元仿真[J]. 激光技术, 2016, 40(5):730-733 doi: 10.7510/jgjs.issn.1001-3806.2016.05.023

    Li Xingliang, Niu Chunhui, Ma Muyan, et al. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irradiation[J]. Laser Technology, 2016, 40(5): 730-733 doi: 10.7510/jgjs.issn.1001-3806.2016.05.023
    [3]
    Malik R, Mills B, Price J H V, et al. Determination of the mid-IR femtosecond surface-damage threshold of germanium[J]. Applied Physics A, 2013, 113(1): 127-133. doi: 10.1007/s00339-012-7499-9
    [4]
    Liu Yang, Liu Lisheng, Tang Wei, et al. Experimental study on the damage of optical materials by out of band composite laser[J]. Applied Sciences, 2020, 10: 3578. doi: 10.3390/app10103578
    [5]
    Lee H. Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride(CaF2)[J]. Journal of Mechanical Science and Technology, 2007, 21(7): 1077-1082. doi: 10.1007/BF03027657
    [6]
    Wang X, Zhu D H, Shen Z H, et al. Surface damage morphology investigations of silicon under millisecond laser irradiation[J]. Applied Surface Science, 2010, 257(5): 1583-1588. doi: 10.1016/j.apsusc.2010.08.098
    [7]
    Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761. doi: 10.1103/PhysRevB.53.1749
    [8]
    徐娇, 陈丽霞, 游兴海, 等. 表面杂质诱导薄膜元件的热应力损伤[J]. 光学学报, 2017, 37:0614003 doi: 10.3788/AOS201737.0614003

    Xu Jiao, Chen Lixia, You Xinghai, et al. Thermal stress damage of thin-film components induced by surface impurities[J]. Acta Optica Sinica, 2017, 37: 0614003 doi: 10.3788/AOS201737.0614003
    [9]
    彭玉峰, 盛朝霞, 张虎, 等. 激光辐照下固体材料的温度分布理论研究[J]. 强激光与粒子束, 2004, 16(10):1225-1228

    Peng Yufeng, Sheng Zhaoxia, Zhang Hu, et al. Theoretical analyses of temperature distributions of solid materials irradiated by high power laser[J]. High Power Laser and Particle Beams, 2004, 16(10): 1225-1228
    [10]
    段晓峰, 牛燕雄, 张雏. 半导体材料的激光辐照效应计算和损伤阈值分析[J]. 光学学报, 2004, 24(8):1057-1061

    Duan Xiaofeng, Niu Yanxiong, Zhang Chu. Calculation of laser irradiation effect and analysis of laser-induced damage threshold in semiconductor[J]. Acta Optica Sinica, 2004, 24(8): 1057-1061
    [11]
    Carr C W, Bude J D, DeMange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304
    [12]
    Shen N, Bude J D, Carr C W. Model laser damage precursors for high quality optical materials[J]. Optics Express, 2014, 22(3): 3393-3404. doi: 10.1364/OE.22.003393
    [13]
    Ristau D. Laser-induced damage in optical materials[M]. Boca Raton: CRC Press, 2014: 27-30.
    [14]
    Bonneau F, Combis P, Rullier J L, et al. Study of UV laser interaction with gold nanoparticles embedded in silica[J]. Applied Physics B, 2002, 75(8): 803-815. doi: 10.1007/s00340-002-1049-7
    [15]
    Stevens-Kalceff M A, Stesmans A, Wong J. Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm[J]. Applied Physics Letters, 2002, 80(5): 758-760. doi: 10.1063/1.1446203
    [16]
    Bude J, Miller P E, Shen N, et al. Silica laser damage mechanisms, precursors and their mitigation[C]//Proceedings of SPIE 9237, Laser-Induced Damage in Optical Materials. 2014: 92370S.
    [17]
    项建胜. 基于Mie光散射理论的气泡测量技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2007: 10-11

    Xiang Jiansheng. Research on bubble measurement technology based on Mie light scattering theory[D]. Xi'an: University of Chinese Academy of Sciences, 2007: 10-11).
    [18]
    Van De Hulst H C. Light scattering by small particles[M]. New York: Dover Publications, 1981: 40-57.
    [19]
    Wang M Y, Ge D B, Xu J, et al. FDTD study on back scattering of conducting sphere coated with double negatibe metamaterials[J]. International Journal of Infrared and Millimeter Waves, 2007, 28: 689. doi: 10.1007/s10762-007-9250-8
    [20]
    Endo R K, Fujihara Y, Susa M. Calculation of the density and heat capacity of silicon by molecular dynamics simulation[J]. High Temperatures-High Pressures, 2003, 35/36(5): 505-511. doi: 10.1068/htjr135
    [21]
    Sin E H, Ong C K, Tan H S. Temperature dependence of Interband optical absorption of silicon at 1152, 1064, 750, and 694 nm[J]. Physica Status Solidi (A), 1984, 85(1): 199-204. doi: 10.1002/pssa.2210850124
  • Relative Articles

    [1]Yü Shihan, Li Xiaofeng, Weng Suming, Zhao Yao, Ma Hanghang, Chen Min, Sheng Zhengming. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33(1): 012006. doi: 10.11884/HPLPB202133.200125
    [2]Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33(7): 075001. doi: 10.11884/HPLPB202133.200321
    [3]Long Feifei, Ming Tingfeng, Zhou Fan, Li Kai, Wang Zhijun, Zhuang Qing, Wu Chengrui, Wang Yumin, Huang Juan, Zang Qing, Zhang Tao, Liu Haiqing, Gao Xiang. Correlation of VUV intensity and basic plasma parameters[J]. High Power Laser and Particle Beams, 2018, 30(4): 046001. doi: 10.11884/HPLPB201830.170378
    [4]Zhang Peng, Hong Yanji, Shen Shuangyan, Ding Xiaoyu. Kinetic effects of plasma-assisted ignition and active particles analysis[J]. High Power Laser and Particle Beams, 2015, 27(03): 032037. doi: 10.11884/HPLPB201527.032037
    [5]Tang Jian, Deng Chunfeng, Wu Chunlei, Lu Biao, Hu Yonghong. Spectral property investigation of pulsed metallic hydride vacuum arc discharge plasmas[J]. High Power Laser and Particle Beams, 2015, 27(11): 114004. doi: 10.11884/HPLPB201527.114004
    [6]Xiang Yong, Yu Deping, Cao Xiuquan, Yao Jin. Experimental study on characteristics of direct-current laminar-flow nitrogen plasma-jet[J]. High Power Laser and Particle Beams, 2014, 26(09): 092005. doi: 10.11884/HPLPB201426.092005
    [7]Liu Mingping, Liu Jianpeng, Luo Rongxiang, Tao Xiangyang. Propagation properties of an intense laser pulse in partially stripped plasma[J]. High Power Laser and Particle Beams, 2014, 26(07): 072006. doi: 10.11884/HPLPB201426.072006
    [8]Luo Weixi, Wang Liangping, Wu Gang, Zhang Xinjun, Cong Peitian, Zeng Zhengzhong. Experimental study on performance parameters of plasma source for the plasma opening switch on QiangguangⅠgenerator[J]. High Power Laser and Particle Beams, 2014, 26(08): 085104. doi: 10.11884/HPLPB201426.085104
    [9]Zhao Xiaoming, Sun Qizhi, Jia Yuesong. Energy deposition of alpha particles in cylindrical and spherical magnetized plasma targets[J]. High Power Laser and Particle Beams, 2014, 26(03): 035002. doi: 10.3788/HPLPB201426.035002
    [10]Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26(08): 089003. doi: 10.11884/HPLPB201426.089003
    [11]Wu Jing, Yao Lieming, Xue Lei. Diagnostics of dust particles in plasma chemical vapor deposition process emission spectroscopy and Langmuir probe[J]. High Power Laser and Particle Beams, 2013, 25(05): 1283-1287. doi: 10.3788/HPLPB20132505.1283
    [12]Zhang Yang, Peng Yang, Hou Jing, Jiang Zongfu. Effects of refractive index of mixed solution on localized surface plasmon resonance[J]. High Power Laser and Particle Beams, 2013, 25(02): 500-504. doi: 10.3788/HPLPB20132502.0500
    [13]Abudurexiti A, TuniyAzi P, WAng QiAn. Weibel instabilities in ultraintense laser-plasma interaction[J]. High Power Laser and Particle Beams, 2012, 24(01): 110-114.
    [14]meng xian, li teng, pan wenxia, chen xi, wu chengkang. Temperature measurements of laminar argon plasma jet[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [15]liu liwei, qu lu, tan yong, zhang xihe. Plasma spectrum analysis of monocrystalline silicon irradiated by pulsed laser[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [16]zhang jun, zhang xiong-jun, wei xiao-feng, wu deng-sheng, tian xiao-lin, cao ding-xiang, dong jun. Depolarization loss analysis of electro-optic crystal KDP heated by repetition frequency laser[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [17]huang shou jiang, li fang. Time domain analysis of electromagnetic pulse propagation in magnetized plasma using Z transforms[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [18]yu dao-jie, niu zhong-xia, yang jian-hong, mo you-quan, zhou dong-fang, hu tao. Characteristics of active lens antenna based on plasma[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [19]qiu yun-li, guo hong, liu ming-wei, tang hua, deng dong-mei. X-ray beam propagation in an inhomogeneous plasma with a continuously varied refractive index[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [20]hu qiang-lin, liu shi-bing, ma shan-jun. Nonlinear polarization of partially stripped plasmas in intense laser field[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.8 %FULLTEXT: 24.8 %META: 72.2 %META: 72.2 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %其他: 1.3 %其他: 1.3 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Koesan: 0.2 %Koesan: 0.2 %Malvern: 0.2 %Malvern: 0.2 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.3 %United States: 0.3 %[]: 1.6 %[]: 1.6 %上海: 1.6 %上海: 1.6 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %北京: 16.4 %北京: 16.4 %十堰: 0.5 %十堰: 0.5 %南京: 0.6 %南京: 0.6 %南通: 0.1 %南通: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %名古屋: 0.2 %名古屋: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.9 %天津: 0.9 %太原: 0.2 %太原: 0.2 %孟买: 0.3 %孟买: 0.3 %宁波: 0.1 %宁波: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %成都市双流区: 0.1 %成都市双流区: 0.1 %成都市武侯区: 0.1 %成都市武侯区: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.8 %新乡: 0.8 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.5 %无锡: 0.5 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %栃木: 0.2 %栃木: 0.2 %: 0.1 %: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %淮南: 0.3 %淮南: 0.3 %深圳: 0.2 %深圳: 0.2 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 2.4 %漯河: 2.4 %班加罗尔: 0.2 %班加罗尔: 0.2 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 27.6 %芒廷维尤: 27.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 26.1 %西宁: 26.1 %西安: 0.3 %西安: 0.3 %运城: 0.2 %运城: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %郴州: 0.1 %郴州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.1 %金华: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.2 %长治: 0.2 %随州: 0.2 %随州: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %其他其他ChinaIndiaKoesanMalvernTaiwan, ChinaUnited States[]上海东莞中山临汾丹东佛山北京十堰南京南通台州合肥名古屋咸阳哈尔科夫哥伦布嘉兴天津太原孟买宁波宜宾宣城常州广州张家口徐州成都成都市双流区成都市武侯区扬州新乡新加坡无锡晋城普洱杭州栃木武汉沈阳沧州泰米尔纳德洛阳济南淮南深圳温州湖州漯河班加罗尔石家庄福州秦皇岛纽约芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安运城邯郸郑州郴州重庆金华长沙长治随州青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (530) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return