Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410
Citation: Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410

Research progress of spatiotemporal mode-locked laser based on multimode fiber

doi: 10.11884/HPLPB202335.220410
  • Received Date: 2022-12-29
  • Accepted Date: 2023-05-15
  • Rev Recd Date: 2023-05-22
  • Available Online: 2023-06-13
  • Publish Date: 2023-10-08
  • This paper introduces the basic principle of spatiotemporal mode-locking (STML) and the theoretical model of STML—attractor dissection.  It presents the recent research progress about STML fiber laser from two aspects of spatial optical structures and all-fiber structures, including the improvement of laser cavity type, the enhancement of output performance, and the observation of real-time dynamics, etc.  The advantage and insufficiency of the current STML laser are analyzed, and the development direction is forecasted: STML laser possesses great potential in generating high-power and ultrashort pulse, but to some extent, the poor quality of output modes hinders its application; improving the beam quality by self-similar evolution, wavefront shaping, etc. will be the direction to develop  STML laser in the future.

  • [1]
    Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [2]
    Bailey G W, Price R L, Voelkl E, et al. Applications of the SESAM in materials science[J]. Microscopy and Microanalysis, 2001, 7(S2): 1126-1127. doi: 10.1017/S1431927600031706
    [3]
    Zhao Kangjun, Gao Chenxin, Xiao Xiaosheng, et al. Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser[J]. Optics Letters, 2020, 45(14): 4040-4043. doi: 10.1364/OL.398323
    [4]
    Chen Jie, Zhao Xin, Yao Zijun, et al. Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser[J]. Optics Express, 2019, 27(8): 11406-11412. doi: 10.1364/OE.27.011406
    [5]
    Bai Xue, Ma Jun, Li Xu, et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 2020, 116: 153701. doi: 10.1063/5.0006248
    [6]
    Letokhov V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0
    [7]
    Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 2016, 351(6271): 357-360. doi: 10.1126/science.aad4811
    [8]
    Wang Heming, Lu Yukun, Wu Lue, et al. Dirac solitons in optical microresonators[J]. Light: Science & Applications, 2020, 9: 205.
    [9]
    Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
    [10]
    Tang Haocheng, Men Ting, Liu Xianglei, et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 2022, 11: 244.
    [11]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [12]
    Cho C Y, Huang Y P, Su K W. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier[J]. Applied Physics B, 2016, 122: 261.
    [13]
    Liu Bin, Liu Chong, Shen Lifeng, et al. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd: YVO4 laser amplifiers[J]. Optics Express, 2016, 24(8): 8988-8996. doi: 10.1364/OE.24.008988
    [14]
    Dong Xiaolin, Xiao Hu, Xu Shanhui, et al. 122-W high-power single-frequency MOPA fiber laser in all-fiber format[J]. Chinese Optics Letters, 2011, 9: 111404. doi: 10.3788/COL201109.111404
    [15]
    Chen Shuo, Liu Yuanyuan, Jin Zhen, et al. Asymmetry core effects in multimode fibers for space-division multiplexing[J]. Journal of the Optical Society of America B, 2021, 38(11): 3309-3318. doi: 10.1364/JOSAB.431198
    [16]
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [17]
    Hofmann P, Mafi A, Jollivet C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers[J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298. doi: 10.1109/JLT.2012.2196406
    [18]
    Fabert M, Săpânțan M, Krupa K, et al. Coherent combining of self-cleaned multimode beams[J]. Scientific Reports, 2020, 10: 20481. doi: 10.1038/s41598-020-77505-0
    [19]
    Leventoux Y, Parriaux A, Sidelnikov O, et al. Highly efficient few-mode spatial beam self-cleaning at 1.5μm[J]. Optics Express, 2020, 28(10): 14333-14344. doi: 10.1364/OE.392081
    [20]
    Mangini F, Gervaziev M, Ferraro M, et al. Statistical mechanics of beam self-cleaning in GRIN multimode optical fibers[J]. Optics Express, 2022, 30(7): 10850-10865. doi: 10.1364/OE.449187
    [21]
    Chen Jikai, Wang Zhaokun, Li Liujiang, et al. GIMF-based SA for generation of high pulse energy ultrafast solitons in a mode-locked linear-cavity fiber laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1480-1485. doi: 10.1109/JLT.2019.2954828
    [22]
    Leventoux Y, Granger G, Krupa K, et al. Frequency-resolved spatial beam mapping in multimode fibers: application to mid-infrared supercontinuum generation[J]. Optics Letters, 2021, 46(15): 3717-3720. doi: 10.1364/OL.428623
    [23]
    Ahsan A S, Agrawal G P. Graded-index solitons in multimode fibers[J]. Optics Letters, 2018, 43(14): 3345-3348. doi: 10.1364/OL.43.003345
    [24]
    Osman M S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide[J]. Computers & Mathematics with Applications, 2018, 75(1): 1-6.
    [25]
    Wang Xiaoyue, Peng Junsong, Huang Kun, et al. Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser[J]. Optics Express, 2019, 27(20): 28808-28815. doi: 10.1364/OE.27.028808
    [26]
    Eslami Z, Ryczkowski P, Amiot C, et al. High-power short-wavelength infrared supercontinuum generation in multimode fluoride fiber[J]. Journal of the Optical Society of America B, 2019, 36(2): A72-A78. doi: 10.1364/JOSAB.36.000A72
    [27]
    Lopez-Galmiche G, Eznaveh Z S, Eftekhar M A, et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 2016, 41(11): 2553-2556. doi: 10.1364/OL.41.002553
    [28]
    Deng Zhixiang, Chen Yu, Liu Jun, et al. Emission of multiple resonant radiations by spatiotemporal oscillation of multimode dark pulses[J]. Optics Express, 2019, 27(24): 36022-36033. doi: 10.1364/OE.27.036022
    [29]
    Chekhovskoy I S, Rubenchik A M, Shtyrina O V, et al. Nonlinear discrete wavefront shaping for spatiotemporal pulse compression with multicore fibers[J]. Journal of the Optical Society of America B, 2018, 35(9): 2169-2175. doi: 10.1364/JOSAB.35.002169
    [30]
    Auston D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6): 420-422. doi: 10.1109/JQE.1968.1075357
    [31]
    Smith P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237. doi: 10.1063/1.1652586
    [32]
    Côté D, Van Driel H M. Period doubling of a femtosecond Ti: sapphire laser by total mode locking[J]. Optics Letters, 1998, 23(9): 715-717. doi: 10.1364/OL.23.000715
    [33]
    Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831
    [34]
    Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1
    [35]
    Su Ning, Li Pingxue, Yao Chuanfei, et al. Passively mode-locked Yb-doped all-fiber oscillator operating at 979 nm and 1032 nm with the single wall carbon nanotubes as SA[J]. Optik, 2019, 198: 163282. doi: 10.1016/j.ijleo.2019.163282
    [36]
    Cui Yudong, Liu Xueming. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969
    [37]
    Gong Ning, Hu Xuewen, Fang Tiantian, et al. Transition metals embedded siloxene as single-atom catalyst for advanced sulfur host in lithium–sulfur batteries: a theoretical study[J]. Advanced Energy Materials, 2022, 12: 2201530. doi: 10.1002/aenm.202201530
    [38]
    Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056
    [39]
    Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752
    [40]
    Liu Yusong, Luo Yiyang, Xia Ran, et al. Internal motions of harmonically mode-locked soliton molecules in a NPR based fiber laser[J]. Optics Communications, 2021, 486: 126790. doi: 10.1016/j.optcom.2021.126790
    [41]
    Qin Huaqiang, Xiao Xiaosheng, Wang Pan, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985. doi: 10.1364/OL.43.001982
    [42]
    Ding Yihang, Xiao Xiaosheng, Wang Pan, et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446. doi: 10.1364/OE.27.011435
    [43]
    Ding Yihang, Xiao Xiaosheng, Liu Kewei, et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 2021, 126: 093901. doi: 10.1103/PhysRevLett.126.093901
    [44]
    Nan Suqin, Bai Yanfeng, Huang Xianwei, et al. The unified imaging condition of Fourier-transform ghost imaging in the far field[J]. Laser Physics Letters, 2020, 17: 055201. doi: 10.1088/1612-202X/ab7a9a
    [45]
    Guo Yuankai, Wen Xiaoxiao, Lin Wei, et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 2021, 12: 67. doi: 10.1038/s41467-020-20438-z
    [46]
    Liu Kewei, Xiao Xiaosheng, Ding Yihang, et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906. doi: 10.1364/PRJ.428687
    [47]
    Kong Lingjie, Xiao Xiaosheng, Yang Changxi. Operating regime analysis of a mode-locking fiber laser using a difference equation model[J]. Journal of Optics, 2011, 13: 105201. doi: 10.1088/2040-8978/13/10/105201
    [48]
    Li Feng, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities[J]. Journal of the Optical Society of America B, 2010, 27(10): 2068-2077. doi: 10.1364/JOSAB.27.002068
    [49]
    Liu Kewei, Xiao Xiaosheng, Yang Changxi. Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534. doi: 10.1364/PRJ.416523
    [50]
    Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412
    [51]
    Teğin U, Rahmani B, Kakkava E, et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2: 056005.
    [52]
    Wei Xiaoming, Jing J C, Shen Yuecheng, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149.
    [53]
    Ruan Qiujun, Xiao Xiaosheng, Zou Jinhai, et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16: 2100678.
    [54]
    Zou Jinhai, Dong Chuchu, Wang Hongjian, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 2020, 9: 61.
    [55]
    Teğin U, Rahmani B, Kakkava E, et al. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438. doi: 10.1364/OE.399668
    [56]
    Teğin U, Ortaç B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber[J]. Optics Letters, 2018, 43(7): 1611-1614. doi: 10.1364/OL.43.001611
    [57]
    Wu Han, Lin Wei, Tan Yanjie, et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13: 022008. doi: 10.35848/1882-0786/ab6938
    [58]
    Long Jingan, Gao Yuxin, Lin Wei, et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591. doi: 10.1364/OL.412086
    [59]
    Ma Zelong, Long Jingan, Lin Wei, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473. doi: 10.1364/OE.415318
    [60]
    Lin Xubin, Gao Yuxin, Long Jingan, et al. All few-mode fiber spatiotemporal mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616. doi: 10.1109/JLT.2021.3087784
    [61]
    Wu Jiawen, Liu Guangxin, Gao Yuxin, et al. Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414.
    [62]
    Xie Shangzhi, Jin Liang, Zhang He, et al. All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917. doi: 10.1364/OE.443505
    [63]
    Zhang Huaiwei, Zhang Yunhong, Peng Jiying, et al. All-fiber spatiotemporal mode-locking lasers with large modal dispersion[J]. Photonics Research, 2022, 10(2): 483-490. doi: 10.1364/PRJ.444750
    [64]
    Zhang Xuebin, Wang Zhaokun, Shen Changyu, et al. Spatiotemporal self-mode-locked operation in a compact partial multimode Er-doped fiber laser[J]. Optics Letters, 2022, 47(8): 2081-2084. doi: 10.1364/OL.451832
    [65]
    Qiu Mingwei, Chen Mengmeng, Zhang Zuxing. Wavelength-dependent Kerr beam self-cleaning in spatiotemporal mode-locked multimode fiber laser[J]. IEEE Photonics Technology Letters, 2021, 33(19): 1073-1076. doi: 10.1109/LPT.2021.3103154
    [66]
    Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487
    [67]
    Lyu Meng, Lin Zhiquan, Li Guowei, et al. Fast modal decomposition for optical fibers using digital holography[J]. Scientific Reports, 2017, 7: 6556. doi: 10.1038/s41598-017-06974-7
    [68]
    Fontaine N K, Ryf R, Chen H S, et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 2019, 10: 1865. doi: 10.1038/s41467-019-09840-4
    [69]
    Shapira O, Abouraddy A F, Joannopoulos J D, et al. Complete modal decomposition for optical waveguides[J]. Physical Review Letters, 2005, 94: 143902. doi: 10.1103/PhysRevLett.94.143902
    [70]
    Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777. doi: 10.1364/AO.52.007769
    [71]
    Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908. doi: 10.1364/AO.52.002905
    [72]
    Xie Kun, Liu Wenguang, Zhou Qiong, et al. Adaptive phase correction of dynamic multimode beam based on modal decomposition[J]. Optics Express, 2019, 27(10): 13793-13802. doi: 10.1364/OE.27.013793
  • Relative Articles

    [1]Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35(3): 031002. doi: 10.11884/HPLPB202335.220263
    [2]Liu Xinxing, Tian Zhen, Tang Yulong. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(1): 011013. doi: 10.11884/HPLPB202032.190458
    [3]Xue Wenlong, Hu Chengzhi, Yue Wenjie, Jiang Junlin, Ding Yichen, Jiang Peipei, Wu Bo, Shen Yonghang. Yb-doped mode-locked fiber laser based on pre-chirp managed nonlinear amplification[J]. High Power Laser and Particle Beams, 2017, 29(09): 091001. doi: 10.11884/HPLPB201729.170105
    [4]Huang Long, Ma Pengfei, Tao Rumao, Shi Chen, Wang Xiaolin, Zhou Pu. 1.5 kW all-fiber linearly polarized laser[J]. High Power Laser and Particle Beams, 2015, 27(01): 010101. doi: 10.11884/HPLPB201527.010101
    [5]Huang Zhihua, Xu Dangpeng, Lin Honghuan, Li Qi, Tian Xiaocheng, Zhang Rui, Deng Ying, Wang Jianjun, Li Mingzhong, Su Jingqin, Zheng Wanguo. High power all-fiber chirped pulse amplification laser system[J]. High Power Laser and Particle Beams, 2014, 26(09): 091015. doi: 10.11884/HPLPB201426.091015
    [6]Cao Dingxiang, Zhang Baofu, Wang Xinglong. An all-fiber, polarized, passively mode-locked thulium doped 2 μm fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(09): 091014. doi: 10.11884/HPLPB201426.091014
    [7]Han Guohua, Hong Xinhua. Mechanism of multiple-soliton formation in passively mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(02): 021002. doi: 10.3788/HPLPB201426.021002
    [8]Yang Weiqiang, Zhang Bin, Hou Jing, Song Rui, Liu Zejin. Gain-switched and mode-locked 2 μm Tm/Ho-codoped fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(11): 2521-2522. doi: 10.3788/HPLPB20122411.2521
    [9]song rui, chen shengping, hou jing, lu qisheng, feng qingqi. Ultralow repetition rate all-normal-dispersion passively mode-locked fiber laser based on SESAM[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [10]ren fang, xiang wanghua, shi xiaozhou, zu peng, bai yangbo, zhang guizhong. Passive harmonically mode-lock Er3+/Yb3+ codoped double-clad fiber ring laser[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [11]xiang wang-hua, li nan, cui yu, ren fang, bai yang-bo, zhang gui-zhong. Er3+-Yb3+ codoped fiber ring cavity passive harmonically mode-locked laser[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [12]li li-bo, lou qi-hong, zhou jun, dong jing-xing, wei yun-rong, li jin-yan. 79.4 W single-transverse-mode output of large-mode-area fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [13]xiang wang-hua, ren kai, liu hao, cui yu, li nan, gan yu, zhou xiao-fang, zhang gui-zhong. Experimental study on passive mode-locked Yb3+ doped fiber laser with F-P cavity[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [14]xiang wang-hua, cui yu, liu hao, ren kai, li nan, gan yu, zhou xiao fang, zhang gui-zhong. Mode locked and Q modulation switched Yb3+ doped ring cavity fiber laser with low pump power[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [15]li zhe, zhang wei, zhao wei, chen guo-fu, wang yi-shan. Impact of injection noise on locked starting of fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [16]zhao xing-hai, gao yang, cheng yong-sheng. High power pulsed laser-induced damage to step-index multimode optical fibers[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [17]wu bo, liu yong-zhi, liu shuang, dai zhi-yong. Single frequency fiber ring laser with mode selection by FBG F-P etalon[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [18]lin hong-huan, sui zhan, wang jian-jun, li ming-zhong. Passive harmonically mode-locked Yb3+-doped fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [19]lin hong-huan, sui zhan, li ming-zhong, wang jian-jun. Passive mode-locked Yb3+-doped fiber ring laser[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [20]peng ren-jun, wu jian. Employing multi-mode fiber to form partially coherent light source for atmospheric optical communication[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 65.4 %META: 65.4 %PDF: 11.3 %PDF: 11.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %其他: 0.7 %其他: 0.7 %Ballwin: 0.0 %Ballwin: 0.0 %Central District: 0.5 %Central District: 0.5 %Dallas: 0.0 %Dallas: 0.0 %Osaka: 0.0 %Osaka: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.0 %Taichung: 0.0 %[]: 0.0 %[]: 0.0 %上海: 4.7 %上海: 4.7 %东京: 0.2 %东京: 0.2 %东莞: 0.5 %东莞: 0.5 %临汾: 0.2 %临汾: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %云浮: 0.1 %云浮: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %兰州: 0.4 %兰州: 0.4 %内江: 0.0 %内江: 0.0 %剑桥: 0.1 %剑桥: 0.1 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %北京: 5.7 %北京: 5.7 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.8 %南京: 0.8 %南宁: 0.1 %南宁: 0.1 %卡拉奇: 0.2 %卡拉奇: 0.2 %厦门: 0.8 %厦门: 0.8 %台州: 0.4 %台州: 0.4 %合肥: 1.1 %合肥: 1.1 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.0 %天津: 1.0 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.0 %娄底: 0.0 %宁波: 0.3 %宁波: 0.3 %安卡拉省: 0.0 %安卡拉省: 0.0 %安康: 0.2 %安康: 0.2 %宜昌: 0.0 %宜昌: 0.0 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.3 %常德: 0.3 %平顶山: 0.0 %平顶山: 0.0 %广州: 4.7 %广州: 4.7 %廊坊: 0.0 %廊坊: 0.0 %张家口: 1.6 %张家口: 1.6 %张家界: 0.0 %张家界: 0.0 %徐州: 0.0 %徐州: 0.0 %恩施: 0.0 %恩施: 0.0 %意法半: 0.1 %意法半: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.2 %扬州: 0.2 %新竹: 0.1 %新竹: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.9 %杭州: 1.9 %栃木: 0.0 %栃木: 0.0 %桂林: 0.0 %桂林: 0.0 %武汉: 1.4 %武汉: 1.4 %水原: 0.2 %水原: 0.2 %汉堡: 0.0 %汉堡: 0.0 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海得拉巴: 0.2 %海得拉巴: 0.2 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 4.6 %深圳: 4.6 %温州: 0.5 %温州: 0.5 %渭南: 0.0 %渭南: 0.0 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.3 %漯河: 1.3 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 29.8 %芒廷维尤: 29.8 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.4 %苏州: 0.4 %荆州: 0.1 %荆州: 0.1 %荆门: 0.0 %荆门: 0.0 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 7.7 %西宁: 7.7 %西安: 1.5 %西安: 1.5 %诺沃克: 1.6 %诺沃克: 1.6 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.8 %运城: 0.8 %通化: 0.1 %通化: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %金华: 0.0 %金华: 0.0 %长春: 0.5 %长春: 0.5 %长沙: 3.4 %长沙: 3.4 %长治: 0.0 %长治: 0.0 %青岛: 1.3 %青岛: 1.3 %香港: 0.0 %香港: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %黄冈: 0.0 %黄冈: 0.0 %其他其他BallwinCentral DistrictDallasOsakaSeattleTaichung[]上海东京东莞临汾丹东丽水乌鲁木齐云浮佛山保定信阳兰州内江剑桥加利福尼亚北京匹兹堡十堰南京南宁卡拉奇厦门台州合肥吉林呼和浩特咸阳哈尔滨哥伦布嘉兴多伦多大连天津太原威海娄底宁波安卡拉省安康宜昌宣城常州常德平顶山广州廊坊张家口张家界徐州恩施意法半成都扬州新竹昆明晋城朝阳杭州栃木桂林武汉水原汉堡汕头沈阳洛阳济南海得拉巴淄博淮南深圳温州渭南湖州湘潭漯河漳州烟台石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州荆州荆门衡水衡阳衢州西宁西安诺沃克贵阳运城通化遵义邯郸郑州重庆金华长春长沙长治青岛香港马鞍山黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views (1424) PDF downloads(256) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return