Kozlov A, Parfenov Yu, Chepelev V, et al. Assessing immunity of power systems to effects of high-voltage pulses with power on[J]. High Power Laser and Particle Beams, 2019, 31: 070006. doi: 10.11884/HPLPB201931.180356
Citation: Shi Jinfang, Qiu Rong, Guo Decheng, et al. Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm[J]. High Power Laser and Particle Beams, 2023, 35: 071003. doi: 10.11884/HPLPB202335.220419

Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm

doi: 10.11884/HPLPB202335.220419
  • Received Date: 2022-12-21
  • Accepted Date: 2023-03-21
  • Rev Recd Date: 2023-03-24
  • Available Online: 2023-05-17
  • Publish Date: 2023-06-15
  • The surface damage characteristics in DKDP crystals under laser irradiation at 355 nm and 1064 nm were studied and compared by using a Nd: YAG laser. The damage precursors and mechanisms corresponding to each damage morphologies were analyzed. The damage results reveal that the surface damage in DKDP crystal is more complex than that in bulk damage. Under the irradiation laser corresponding to the pulse width of 10 ns and the damage probability at 0% − 50%, surface damage morphology in DKDP crystals mainly contained four typical damage morphology: crater with cavity, crater with flat bottom, surface damage crack, and surface ablation. Through the comparison and analysis of the imaging of optical microscope and scanning electron microscope, damage precursors that induced damage craters with bottom cavity and surface cracks were mainly bulk defects, which were the same as the precursors forming the internal damage points (pinpoints). The precursors that induced damage craters with flat bottom were relatively complex, which could be the surface contamination, surface cracks, machining defects, and shallow surface bulk defects. For surface ablation, it was mainly caused by surface contamination and surface absorption defects. Surface damage is still one of the important factors limiting the laser damage resistance of KDPD crystals.
  • [1]
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [2]
    柴向旭, 李富全, 王圣来, 等. 氘含量对DKDP晶体横向受激拉曼散射增益系数的影响[J]. 物理学报, 2015, 64:034213 doi: 10.7498/aps.64.034213

    Chai Xiangxu, Li Fuquan, Wang Shenglai, et al. Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal[J]. Acta Physica Sinica, 2015, 64: 034213 doi: 10.7498/aps.64.034213
    [3]
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [4]
    刘畅, 巨新, 刘宝安, 等. 大口径DKDP元件的辐照损伤分布特性[J]. 强激光与粒子束, 2021, 33:111013 doi: 10.11884/HPLPB202133.210198

    Liu Chang, Ju Xin, Liu Baoan, et al. Irradiation damage distribution characteristics of DKDP in large-aperture high-energy laser[J]. High Power Laser and Particle Beams, 2021, 33: 111013 doi: 10.11884/HPLPB202133.210198
    [5]
    赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [6]
    Huang Jin, Wu Zhiqing, Wang Fengrui, et al. Initial damage and damage growth of KDP crystals induced by 355 nm pulse laser[J]. Crystal Research & Technology, 2018, 53: 1700269.
    [7]
    徐子媛, 王岳亮, 赵元安, 等. 不同脉冲宽度355 nm波长激光诱导DKDP晶体损伤特性[J]. 强激光与粒子束, 2019, 31:091004 doi: 10.11884/HPLPB201931.190164

    Xu Ziyuan, Wang Yueliang, Zhao Yuanan, et al. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31: 091004 doi: 10.11884/HPLPB201931.190164
    [8]
    Wang Yueliang, Zhao Yuanan, Xie Xiaoyi, et al. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letters, 2016, 41(7): 1534-1537. doi: 10.1364/OL.41.001534
    [9]
    Cheng Jian, Wang Janghe, Peng Enhong, et al. Combined modulation of incident laser light by multiple surface scratches and their effects on the laser damage properties of KH2PO4 crystal[J]. Optics Express, 2020, 28(6): 8764-8782. doi: 10.1364/OE.388741
    [10]
    陈明君, 姜伟, 庞启龙, 等. KDP晶体微纳米加工表层缺陷对其激光损伤阈值的影响[J]. 强激光与粒子束, 2010, 22(1):159-164 doi: 10.3788/HPLPB20102201.0159

    Chen Mingjun, Jiang Wei, Pang Qilong, et al. Simulation of micro—nano processing induced surface defects influencing KDP laser damage threshold[J]. High Power Laser and Particle Beams, 2010, 22(1): 159-164 doi: 10.3788/HPLPB20102201.0159
    [11]
    Gao Wei, Ji Jianwei, Wang Chao, et al. Mitigation of subsurface damage in potassium dihydrogen phosphate (KDP) crystals with a novel abrasive-free jet process[J]. Optical Materials Express, 2018, 8(9): 2625-2635. doi: 10.1364/OME.8.002625
    [12]
    Yang Hao, Cheng Jian, Chen Mingjun, et al. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling[J]. Optics Express, 2017, 25(15): 18332-18345. doi: 10.1364/OE.25.018332
    [13]
    Liu Zhichao, Geng Feng, Li Yaguo, et al. Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351 nm nanosecond laser[J]. Applied Optics, 2018, 57(35): 10334-10341. doi: 10.1364/AO.57.010334
    [14]
    Wang Shengfei, Wang Jian, Xu Qiao, et al. Influences of surface defects on the laser-induced damage performances of KDP crystal[J]. Applied Optics, 2018, 57(10): 2638-2646. doi: 10.1364/AO.57.002638
    [15]
    Han Wei, Zhou Lidan, Xiang Yong, et al. Characteristics of laser-induced surface and bulk damage of large-aperture deuterated potassium dihydrogen phosphate at 351 nm[J]. Chinese Physics Letters, 2016, 33: 027803. doi: 10.1088/0256-307X/33/2/027803
    [16]
    Yang Hao, Cheng Jian, Liu Zhichao, et al. Dynamic behavior modeling of laser-induced damage initiated by surface defects on KDP crystals under nanosecond laser irradiation[J]. Scientific Reports, 2020, 10: 500. doi: 10.1038/s41598-019-57300-2
    [17]
    Papernov S, Schmid A W. Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation[C]//Proceedings of SPIE 7132, Laser-Induced Damage in Optical Materials: 2008. 2008: 71321J.
    [18]
    Wang Shengfei, Wang Jian, Lei Xiangyang, et al. Investigation of the laser-induced surface damage of KDP crystal by explosion simulation[J]. Optics Express, 2019, 27(11): 15142-15158. doi: 10.1364/OE.27.015142
    [19]
    赵元安, 胡国行, 刘晓凤, 等. 激光预处理技术及其应用[J]. 光学 精密工程, 2016, 24(12):2938-2947 doi: 10.3788/OPE.20162412.2938

    Zhao Yuanan, Hu Guohang, Liu Xiaofeng, et al. Laser conditioning technology and its applications[J]. Optics and Precision Engineering, 2016, 24(12): 2938-2947 doi: 10.3788/OPE.20162412.2938
    [20]
    Li Ting, Zhao Yuanan, Lian Yafei, et al. Optimizing sub-nanosecond laser conditioning of DKDP crystals by varying the temporal shape of the pulse[J]. Optics Express, 2021, 29(22): 35993-36004. doi: 10.1364/OE.441918
    [21]
    刘志超, 许乔, 雷向阳, 等. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术[J]. 物理学报, 2021, 70:074208 doi: 10.7498/aps.70.20201524

    Liu Zhichao, Xu Qiao, Lei Xiangyang, et al. Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal[J]. Acta Physica Sinica, 2021, 70: 074208 doi: 10.7498/aps.70.20201524
    [22]
    Sun Wei, Qi Hongji, Fang Zhou, et al. 1064 nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica[J]. Applied Surface Science, 2014, 309: 79-84. doi: 10.1016/j.apsusc.2014.04.179
    [23]
    Chambonneau M, Rullier J L, Grua P, et al. Wavelength dependence of the mechanisms governing the formation of nanosecond laser-induced damage in fused silica[J]. Optics Express, 2018, 26(17): 21819-21830. doi: 10.1364/OE.26.021819
    [24]
    胡国行. KDP/DKDP晶体和熔石英激光损伤及抑制技术研究[D]. 上海: 中国科学院研究生院, 2011: 48-76

    Hu Guoxing. Laser induced damage and suppression techniques for KDP/DKDP crystal and fused silica [D]. Beijing: Chinese Academy of Sciences, 2011
    [25]
    Carr C W, Feit M D, Johnson M A, et al. Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals[J]. Applied Physics Letters, 2006, 89: 131901. doi: 10.1063/1.2345254
    [26]
    Wang Ke, Ma Bin, Han Jiaqi, et al. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses[J]. Applied Optics, 2019, 58(32): 8882-8888. doi: 10.1364/AO.58.008882
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469
    [4]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [5]Shi Lei, Zhu Yufeng, Lu Yanlei, Qiao Hanqing, Xia Wenfeng, Fan Yajun. Compact GW nanosecond pulse generator based on Tesla transformer[J]. High Power Laser and Particle Beams, 2014, 26(12): 125001. doi: 10.11884/HPLPB201426.125001
    [6]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [7]Zhang Rui, Huang Kun, Zou Xiaobing, Wang Xinxin. Circuit simulation of variable-impedance transmission line based on equal-impedance-difference segmentation method[J]. High Power Laser and Particle Beams, 2012, 24(05): 1221-1224. doi: 10.3788/HPLPB20122405.1221
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [10]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [11]shen xuming, zhang peng, he tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [13]zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [14]xie su-long, cao xue-jun. Theoretic research of X-band excessive modes cylindrical cavity pulse compression technology[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
    [15]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [16]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [17]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [19]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 秦锋,陈伟,王旭桐,任书庆,黄涛,聂鑫. 强电磁脉冲下金属氧化物避雷器瞬态响应特性. 高电压技术. 2022(08): 3326-3333 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 74.9 %META: 74.9 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.3 %Iran (ISLAMIC Republic Of): 0.3 %Mexico: 0.3 %Mexico: 0.3 %[]: 0.1 %[]: 0.1 %上海: 0.3 %上海: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %内江: 0.3 %内江: 0.3 %北京: 16.6 %北京: 16.6 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %台州: 0.4 %台州: 0.4 %巴中: 0.2 %巴中: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 0.2 %张家口: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.4 %昆明: 0.4 %杭州: 1.6 %杭州: 1.6 %武汉: 0.2 %武汉: 0.2 %深圳: 0.3 %深圳: 0.3 %湖州: 0.2 %湖州: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.6 %秦皇岛: 0.6 %芒廷维尤: 25.9 %芒廷维尤: 25.9 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.6 %衢州: 0.6 %西宁: 43.3 %西宁: 43.3 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.2 %金华: 0.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndiaIran (ISLAMIC Republic Of)Mexico[]上海中山临汾临沂丹东内江北京南京南宁台州巴中广州张家口成都扬州新乡昆明杭州武汉深圳湖州福州秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城郑州重庆金华长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (570) PDF downloads(110) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return