Li Weibin, Wu Yi, Ren Qinghua, et al. Synchronization signal processing system of thyristor power supply based on NI CompactRIO[J]. High Power Laser and Particle Beams, 2021, 33: 036003. doi: 10.11884/HPLPB202133.200296
Citation: Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002. doi: 10.11884/HPLPB202335.220420

Design of high power wide frequency ratio C/X dual -band reflectarray antenna

doi: 10.11884/HPLPB202335.220420
  • Received Date: 2022-12-22
  • Accepted Date: 2023-03-08
  • Rev Recd Date: 2023-03-12
  • Available Online: 2023-03-18
  • Publish Date: 2023-05-06
  • To meet the research demand of high-power microwave system for wide frequency ratio dual-band antenna, this paper proposes a high-power circularly polarized reflectarray antenna that can work in C/X dual-band. The antenna unit adopts the form of substrate buried patch, and the patch part consists of an elliptical ring patch nested with an elliptical patch in the inner to realize the radiation of low frequency (C-band) and high frequency (X-band) respectively. This nested cell form enables the antenna to achieve a wide frequency ratio, at the same time, because the cell has no abrupt structure and it is buried in the substrate to avoid the emergence of triple junction, it has a high power capacity. The two patches of high and low frequency bands rotate around the axis to adjust the reflection phase, which can meet the reflection phase adjustment of 360° on the basis of small reflection loss. Based on the above dual-band radiation unit, design and optimization of a 20×20 rectangular grid reflectarray antenna with an aperture size of 400 mm×400 mm are made. While the antenna works at 4.3 GHz, the gain is 22.2 dBi, the aperture efficiency is 40.2%, and the power capacity is 10.4 MW in air condition. At 10.4 GHz, the antenna has a gain of 29.9 dBi, an aperture efficiency of 40.5%, and a power capacity of 12.2 MW in air condition. the frequency ratio between high and low working frequencies of the antenna reaches 2.4, and it has the characteristics of high efficiency and high power capacity.
  • [1]
    Lee B M, Lee W S, Yoon Y J, et al. X-band TM01-TE11 mode converter with short length for high power[J]. Electronics Letters, 2004, 40(18): 1126-1127. doi: 10.1049/el:20045306
    [2]
    Thomas B, James G, Greene K. Design of wide-band corrugated conical horns for Cassegrain antennas[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(6): 750-757. doi: 10.1109/TAP.1986.1143899
    [3]
    Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [4]
    袁成卫, 凌根深. Vlasov辐射器反射特性研究[J]. 强激光与粒子束, 2003, 15(2):172-175

    Yuan Chengwei, Ling Genshen. Reflective characteristics of bevel-cut Vlasov radiator[J]. High Power Laser and Particle Beams, 2003, 15(2): 172-175
    [5]
    El Misilmani H, Al-Husseini M, Kabalan K Y, et al. Optimized reflector position for Vlasov antennas[C]//Electromagnetics Research Symposium Proceedings. 2013.
    [6]
    Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [7]
    Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371
    [8]
    Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [9]
    李相强, 刘庆想, 赵柳, 等. 高功率双层径向线螺旋阵列天线实验研究[J]. 强激光与粒子束, 2006, 18(2):265-268

    Li Xiangqiang, Liu Qingxiang, Zhao Liu, et al. Experiment research of high power helical array antenna fed from double-layered radial waveguide[J]. High Power Laser and Particle Beams, 2006, 18(2): 265-268
    [10]
    Yuan Chengwei, Peng Shengren, Shu Ting, et al. Designs and experiments of a novel radial line slot antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 4940-4946. doi: 10.1109/TAP.2013.2273214
    [11]
    Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [12]
    Campbell S D, Mackertich-Sengerdy G, Binion J D, et al. Metamaterial-enabled reflectarray antennas for high-power microwave applications[C]//Proceedings of 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020: 651-652.
    [13]
    Gregory M D, Bossard J A, Morgan Z C P O, et al. Metamaterials for high power reflectarray design[C]//Proceedings of 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES). 2016: 1-2.
    [14]
    孔歌星, 李相强, 张健穹, 等. X波段高功率宽频带双螺旋反射阵列天线的设计[J]. 强激光与粒子束, 2019, 31:093001 doi: 10.11884/HPLPB201931.190084

    Kong Gexing, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wideband dual-helical reflectarray antenna[J]. High Power Laser and Particle Beams, 2019, 31: 093001 doi: 10.11884/HPLPB201931.190084
    [15]
    Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [16]
    Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 612-622. doi: 10.1109/TAP.2016.2639023
    [17]
    Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
  • Relative Articles

    [1]Ding Baiwen, Hao Jianhong, Zhang Fang, Zhao Qiang, Fan Jieqing, Dong Zhiwei. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams, 2024, 36(12): 124003. doi: 10.11884/HPLPB202436.240175
    [2]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Yang Bo, Qiu Rui, Lu Wei, Wu Zhen, Li Chunyan, Zhang Hui, Li Junli. Shielding study of hard X-rays produced by high-intensity laser interaction with solid targets[J]. High Power Laser and Particle Beams, 2017, 29(07): 071007. doi: 10.11884/HPLPB201729.170006
    [8]Zhu Pengfei, Ye Yan, Li Zuoyou, Yang Qingguo, Qi Shuangxi, Qian Weixin, Chen Jinming. Numerical simulation study of effects of X-ray scattering on areal density measurement results[J]. High Power Laser and Particle Beams, 2015, 27(06): 064001. doi: 10.11884/HPLPB201527.064001
    [9]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [10]Zhao Mo, Cheng Yinhui, Wu Wei, Ma Liang, Li Jinxi, Zhou Hui, Li Baozhong, Zhu Meng. Numerical simulation for calculating transient response of coaxial line with diode to pulsed X-ray[J]. High Power Laser and Particle Beams, 2013, 25(02): 490-494. doi: 10.3788/HPLPB20132502.0490
    [11]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [12]Yang Zuhua, Zhao Zongqing, Tan Fang, Cao Leifeng, Gu Yuqiu, Xiao Shali, Yan Yonghong, Yu Jinqing, Fan Wei, Qian Feng. Numerical simulation of betatron X-ray emission from laser-produced wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2012, 24(08): 1851-1855. doi: 10.3788/HPLPB20122408.1851
    [13]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [14]wang xiaomin, yang chao, liu dagang, wang xueqiong. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [15]zhang pengfei, li yongdong, yang hailiang, qiu aici, liu chunliang, wang hongguang, guo fan, su zhaofeng, sun jianfeng, sun jiang, gao yi. Simulation of loss electron in vacuum magnetically insulated transmission lines[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [16]qin feng, chang anbi, ding enyan, luo min. Particle-in-cell simulation of pseudospark switch based on particle-in-cell plus Monte-Carlo collision method[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [17]li yongdong, wang hongguang, liu chunliang, zhou yan, liu meiqin. Compensated particle in cell-Monte Carlo collision model with wide time step limit[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [18]he hu, lu qing xiang. Particle simulation and optimization design of the Xband transit time tube oscillator[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]mu wei-bing, chen pan-xun. Simulative calculation of the dose enhancement factor of W-SiO2 and Ta-SiO2 interface[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 顾余辉. 直线加速器维修维护及质控措施研究分析. 中国设备工程. 2024(07): 48-50 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.3 %FULLTEXT: 23.3 %META: 75.5 %META: 75.5 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.3 %丽水: 0.3 %北京: 24.0 %北京: 24.0 %北莱茵-威斯特法伦州: 0.4 %北莱茵-威斯特法伦州: 0.4 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %安康: 0.1 %安康: 0.1 %广州: 0.2 %广州: 0.2 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.6 %张家口: 0.6 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 10.9 %芒廷维尤: 10.9 %衢州: 0.4 %衢州: 0.4 %西宁: 52.3 %西宁: 52.3 %西安: 0.6 %西安: 0.6 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他ChinaIndiaUnited States[]上海中山临汾丹东丽水北京北莱茵-威斯特法伦州台州合肥安康广州弗吉张家口新乡晋城普洱杭州桃园武汉深圳湖州秦皇岛绵阳芒廷维尤衢州西宁西安达拉斯运城郑州重庆长治阳泉黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (723) PDF downloads(89) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return