Xu Zefang, Yan Yongqing, Qiang Pengfei, et al. Single energy X-ray source for calibration of X-ray detectors[J]. High Power Laser and Particle Beams, 2023, 35: 091007. doi: 10.11884/HPLPB202335.220422
Citation: Xu Zefang, Yan Yongqing, Qiang Pengfei, et al. Single energy X-ray source for calibration of X-ray detectors[J]. High Power Laser and Particle Beams, 2023, 35: 091007. doi: 10.11884/HPLPB202335.220422

Single energy X-ray source for calibration of X-ray detectors

doi: 10.11884/HPLPB202335.220422
  • Received Date: 2022-12-22
  • Accepted Date: 2023-06-17
  • Rev Recd Date: 2023-06-26
  • Available Online: 2023-06-30
  • Publish Date: 2023-09-15
  • To improve the calibration accuracy of X-ray detectors, this paper presents a method of placing filters in fluorescent X-ray emission channels to improve the purity of X-rays. Monte Carlo simulation model was established to analyze the relationship between the probability of photoelectric effect in K layer and the atomic number, and the curve of fluorescence intensity and purity with filter thickness was obtained. In atmospheric environment, the energy spectrum distribution and photon flux of fluorescent X-ray source were measured by silicon drift semiconductor detector, and the effect of X-ray tube voltage on photon flux and fluorescence purity was analyzed. When the radiator material is copper and the thickness of the filter (nickel) is 0 μm, 10 μm and 30 μm, the purity of fluorescence X-ray measured is 75.61%, 85.38% and 84.25%, and the photon flux is 3425 phs/s, 2023 phs/s and 1192 phs/s, respectively. The influence of filter thickness on the purity and intensity of fluorescent X-ray is confirmed, which provides a direction for solving the problem that it is difficult to calibrate X-ray detectors with high accuracy due to the lack of monochromatism of fluorescent X-ray light source.
  • [1]
    Li Tipei, Xiong Shaolin, Zhang Shuangnan, et al. Insight-HXMT observations of the first binary neutron star merger GW170817[J]. Science China Physics, Mechanics & Astronomy, 2018, 61: 031011.
    [2]
    Tuo Youli, Ge Mingyu, Song Liming, et al. Insight-HXMT observations of the Crab pulsar[J]. Research in Astronomy and Astrophysics, 2019, 19: 087. doi: 10.1088/1674-4527/19/6/87
    [3]
    Zhang Dali, Li Xinqiao, Xiong Shaolin, et al. Energy response of GECAM gamma-ray detector based on LaBr3: Ce and SiPM array[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 921: 8-13.
    [4]
    Wang Shen, Guo Jianhua, Zhang Yan, et al. High-resolution pixelated CdZnTe detector prototype system for solar hard X-ray imager[J]. Nuclear Science and Techniques, 2019, 30: 42. doi: 10.1007/s41365-019-0571-9
    [5]
    Dong Yongwei, Wu Bobing, Li Yanguo, et al. SVOM gamma ray monitor[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(1): 40-42.
    [6]
    Götz D, Paul J, Basa S, et al. SVOM: a new mission for gamma-ray burst studies[J]. AIP Conference Proceedings, 2009, 1133: 25-30.
    [7]
    Yuan Weimin, Zhang Chen, Chen Yong, et al. Einstein probe: exploring the ever-changing X-ray universe[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48: 039502.
    [8]
    Zhang Shuangnan, Santangelo A, Feroci M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62: 29502.
    [9]
    Guo Siming, Jiang Zheng, Wu Jinjie, et al. Research on a tunable monochromatic X-rays source in (5~40) keV[J]. Applied Radiation and Isotopes, 2022, 181: 110096. doi: 10.1016/j.apradiso.2022.110096
    [10]
    Kobayashi K, Yabashi M, Takata Y, et al. High resolution-high energy X-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-high k insulator systems[J]. Applied Physics Letters, 2003, 83(5): 1005-1007. doi: 10.1063/1.1595714
    [11]
    Zhou Xu, Li Xinqiao, Xie Yaning, et al. Introduction to a calibration facility for hard X-ray detectors[J]. Experimental Astronomy, 2014, 38(3): 433-441. doi: 10.1007/s10686-014-9393-2
    [12]
    Gambaccini M, Tuffanelli A, Taibi A, et al. Bragg-diffraction-based quasi-monochromatic source for mammography using mosaic crystals[C]//Proceedings of SPIE 3770, Medical Applications of Penetrating Radiation. 1999: 174-184.
    [13]
    Csete I. Production of fluorescent X-rays from 8 to 100 keV[J]. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 1992, 43(6): 767-776. doi: 10.1016/0883-2889(92)90240-F
    [14]
    代锦飞, 赵宝升, 盛立志, 等. 标定脉冲星导航探测器的荧光X射线光源[J]. 物理学报, 2015, 64:149071 doi: 10.7498/aps.64.149701

    Dai Jinfei, Zhao Baosheng, Sheng Lizhi, et al. Ffluorescence X-ray source used for calibrating the detector of X-ray navigation[J]. Acta Physica Sinica, 2015, 64: 149071 doi: 10.7498/aps.64.149701
    [15]
    祝宇轩, 王于仨, 陈勇, 等. 用于软X射线探测器标定的X射线二次多靶源[J]. 核技术, 2021, 44:050402 doi: 10.11889/j.0253-3219.2021.hjs.44.050402

    Zhu Yuxuan, Wang Yusa, Chen Yong, et al. X-ray secondary multiple target sources for calibration of soft X-ray detectors[J]. Nuclear Techniques, 2021, 44: 050402 doi: 10.11889/j.0253-3219.2021.hjs.44.050402
    [16]
    Bambynek W, Crasemann B, Fink R W, et al. X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities[J]. Reviews of Modern Physics, 1972, 44(4): 716-813. doi: 10.1103/RevModPhys.44.716
    [17]
    Ménesguen Y, Lépy M C. Mass attenuation coefficients in the range 3.8≤E≤11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(16): 2477-2486. doi: 10.1016/j.nimb.2010.05.044
    [18]
    梁敬魁. 粉末衍射法测定晶体结构-上册: X射线衍射结构晶体学基础[M]. 2版. 北京: 科学出版社, 2011

    Liang Jingkui. Determination of crystal structure by powder method (Volume 1)[M]. 2nd ed. Beijing: Science Press, 2011
    [19]
    盛立志, 赵宝升, 吴建军, 等. X射线脉冲星导航系统模拟光源的研究[J]. 物理学报, 2013, 62:129702 doi: 10.7498/aps.62.129702

    Sheng Lizhi, Zhao Baosheng, Wu Jianjun, et al. Research of X-ray pulsar navigation simulation source[J]. Acta Physica Sinica, 2013, 62: 129702 doi: 10.7498/aps.62.129702
    [20]
    Storm E. Bremsstrahlung-induced K-fluorescent radiation[J]. Journal of Applied Physics, 1976, 47(7): 3060-3070. doi: 10.1063/1.323053
  • Relative Articles

    [1]Zhang Lingyu, Li Rui, Li Gang, Jia Qinggang, Deng Li. JMCT simulation of response functions for gamma-ray detectors[J]. High Power Laser and Particle Beams, 2017, 29(01): 016024. doi: 10.11884/HPLPB201729.160454
    [2]Wang Kunlun, Ren Xiaodong, Huang Xianbin, Zhang Siqun, Zhou Shaotong, Dan Jiakun, Li Jing, Xu Qiang, Ouyang Kai, Cai Hongchun, Wei Bing, Ji Ce, Feng Shuping. Flat spectral response XRD for diagnosing soft X-ray flux on PTS[J]. High Power Laser and Particle Beams, 2016, 28(04): 045009. doi: 10.11884/HPLPB201628.125009
    [3]Ma Qingli, Tang Shibiao, Wu Yanhua. Simulation of position-sensitive γ-ray detector based onplastic scintillating fiber array[J]. High Power Laser and Particle Beams, 2015, 27(07): 076004. doi: 10.11884/HPLPB201527.076004
    [4]Wang Xi, Xiao Shali, Li Miao, Zhang Liuqiang, Cao Yulin, Chen Yuxiao. Further polarization effect of CdZnTe detectors under high flux X-ray irradiation[J]. High Power Laser and Particle Beams, 2013, 25(03): 773-777. doi: 10.3788/HPLPB20132503.0773
    [5]Wang Chao, Shi Jiaming, Zhao Dapeng, Xu Bo, Chen Zongsheng, Lin Zhidan, Huang Fangyi, Wang Qichao. Analysis on robustness of thickness of narrowband filters for far infrared[J]. High Power Laser and Particle Beams, 2013, 25(04): 858-862.
    [6]Hou Lifei, Li ZHicHao, Yuan Yongteng, Kuang Longyu, Yang GuoHong, Liu SHenye. Relative calibration of chemical vapor deposited diamond X-ray detector[J]. High Power Laser and Particle Beams, 2012, 24(08): 1871-1873. doi: 10.3788/HPLPB20122408.1871
    [7]hou lifei, li fang, liu shenye, yang guohong. Chemical vapor deposited diamond detectors for soft X-ray power measurement[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [8]yuan zheng, chen tao, cao zhurong, sun kexu, yi rongqing, liu shenye. Energy dependent sensitivity of Au-coated-microchannel plate detector in X-ray range[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [9]li fang, hou lifei, su chunxiao, yang guohong, liu shenye. CVD diamond based soft X-ray detector with fast response[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [10]sun fengju, qiu aici, yang hailiang, zeng jiangtao, gai tongyang, liang tianxue, yin jiahui, sun jianfeng, cong peitian, huang jianjun, su zhaofeng, gao yi, liu zhigang, jiang xiaofeng, li jingya, zhang zhong, song guzhou, pei mingjing, niu shengli. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [11]gao yi, ma jiming, zhang zhong, zhang pengfei, sun jiang, wang zhiguo, yin jiahui, liang tianxue, du taibin. Spot size measurement for pulsed X-ray source with lamination method[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [12]fu lianxiao, wu yonggang, wu heyun, jiao hongfei, lü gang, wang zhenhua. Fabrication and characterization of 30.4 nm Cr/Al/Cr self-supporting filters[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [13]fan xianhong, chen bo, guan qingfeng. Effect of proton irradiation on transmittance of Al filter at EUV waveband[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [14]wang lan, ouyang xiao-ping, fan ru-yu, zhang zhong-bing, pan hong-bo, liu lin-yue, . Irradiation effects of proton and gamma -ray on CVD diamond detector[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [15]gao wei-dong, he hong-bo, zhao yuan-an, shao jan-da, fan zheng-xiu. Laser-induced damage behaviors of Ta2O5/SiO2 narrow-band interference filters under different laser output modes[J]. High Power Laser and Particle Beams, 2005, 17(02): 191- .
    [16]ma jing-long, ma wei-yi, zhou chuang-zhi, hu feng-ming, gong kun, shan yu-sheng, wang nai-yan. Imaging of UV laser beam and soft X rays using a commercial CCD camera[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [17]chen zhuo-tian, zhao jun-yu, fang zi-shen, yang li. Effective range of electron temperature measured by infrared Nd:glass laser scattering apparatus[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [18]yuan yong hua, liu song hao, sun cheng wei, fan zheng xiu, liao chang jun, zhao yuan an. CW laserinduced transmission change in ZnSe/MgF2/K9 filter[J]. High Power Laser and Particle Beams, 2003, 15(04): 0- .
    [19]xie yu-tong, dai zhi-yong, han qing. Improvement on the accuracy of beam bugs in linear induction accelerator[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [20]yuan yong hua, liu song hao, sun cheng wei, luo fu, fan zheng xiu, liao chang jun, hu hai yang. Damage effects of Qswitched Nd:YAG laser beam on IR filter[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.1 %FULLTEXT: 22.1 %META: 72.3 %META: 72.3 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %其他: 0.4 %其他: 0.4 %China: 0.2 %China: 0.2 %San Lorenzo: 1.9 %San Lorenzo: 1.9 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.1 %United States: 0.1 %上海: 1.6 %上海: 1.6 %东京: 0.1 %东京: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.2 %兰辛: 0.2 %北京: 2.8 %北京: 2.8 %十堰: 0.4 %十堰: 0.4 %南京: 0.2 %南京: 0.2 %南昌: 0.1 %南昌: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.2 %宁波: 0.2 %安康: 0.2 %安康: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.8 %张家口: 0.8 %悉尼: 0.3 %悉尼: 0.3 %成都: 1.6 %成都: 1.6 %扬州: 0.6 %扬州: 0.6 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济源: 0.1 %济源: 0.1 %淄博: 0.3 %淄博: 0.3 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %渭南: 0.2 %渭南: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 1.4 %漯河: 1.4 %特洛伊: 0.1 %特洛伊: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 51.0 %芒廷维尤: 51.0 %芝加哥: 0.6 %芝加哥: 0.6 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 12.1 %西宁: 12.1 %西安: 1.6 %西安: 1.6 %西雅图: 0.5 %西雅图: 0.5 %诺沃克: 4.5 %诺沃克: 4.5 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %金奈: 0.2 %金奈: 0.2 %铁岭: 0.1 %铁岭: 0.1 %长沙: 0.6 %长沙: 0.6 %青岛: 0.1 %青岛: 0.1 %香港: 0.1 %香港: 0.1 %其他其他ChinaSan LorenzoSeattleUnited States上海东京临汾丹东丽水乌鲁木齐保定兰州兰辛北京十堰南京南昌博阿努瓦台州合肥呼和浩特哈尔滨哈尔科夫嘉兴天津宁波安康宜宾宣城巴音郭楞常州常德广州库比蒂诺廊坊张家口悉尼成都扬州无锡昆明晋城普洱杭州格兰特县武汉沈阳洛阳济南济源淄博深圳温州渭南湖州漯河特洛伊石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙运城遵义邯郸郑州重庆金奈铁岭长沙青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (908) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return