Zhou Xiaohong, Ren Xiaoming, Wei Chengfu, et al. Two-dimensional beam shaping for beams with large aspect ratio and variable divergence angle[J]. High Power Laser and Particle Beams, 2017, 29: 071003. doi: 10.11884/HPLPB201729.160520
Citation: Yang Shaojie, Wang Bangji, Li Wei, et al. Design of an LC charging power supply with a boost structure[J]. High Power Laser and Particle Beams, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002

Design of an LC charging power supply with a boost structure

doi: 10.11884/HPLPB202335.230002
  • Received Date: 2023-01-05
  • Accepted Date: 2023-06-08
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-06-30
  • Publish Date: 2023-08-15
  • LC resonant charging scheme is suitable for high repetition rate pulse power system because of its simple circuit structure and control method, small size and high power efficiency. To make the LC resonant charging scheme with a higher boost range and improve its adaptability to supply voltage changes, this paper adopts a circuit topology with a boost structure, which enables the LC resonant charging scheme to have the ability to boost and reduce voltage. At the same time, it uses a control algorithm based on real-time energy detection, which enables the scheme to accurately charge and discharge according to preset parameters, and enhances the adaptability to supply voltage fluctuations. The preliminary experimental results show that the power supply can complete the regulation of voltage rise and fall when the supply voltage fluctuates, and the maximum voltage deviation is less than 5 V, thus it has higher charging accuracy and better charging consistency.
  • [1]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2]
    钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2):1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005

    Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005
    [3]
    Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [4]
    李名加, 康强, 常安碧, 等. 紧凑型重复频率高压脉冲变压器研制[J]. 高电压技术, 2009, 35(2):340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037

    Li Mingjia, Kang Qiang, Chang Anbi, et al. Development of a compact repetitive high-voltage pulse transformer[J]. High Voltage Engineering, 2009, 35(2): 340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037
    [5]
    甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30:065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [6]
    冯传均, 何泱, 戴文峰, 等. 串联谐振高压电容充电电源设计及分析[J]. 强激光与粒子束, 2019, 31:055002 doi: 10.11884/HPLPB201931.180355

    Feng Chuanjun, He Yang, Dai Wenfeng, et al. Design and analysis of series resonant high voltage capacitor charging power supply[J]. High Power Laser and Particle Beams, 2019, 31: 055002 doi: 10.11884/HPLPB201931.180355
    [7]
    张天洋. 高功率脉冲驱动源的初级储能充电系统及其关键技术研究[D]. 长沙: 国防科技大学, 2016

    Zhang Tianyang. Investigation of primary energy supply system in high power pulse generators and related technologies[D]. Changsha: National University of Defense Technology, 2016
    [8]
    乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30:085005 doi: 10.11884/HPLPB201830.170526

    Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005 doi: 10.11884/HPLPB201830.170526
    [9]
    Jiang W, Matsuda T, Yatsui K, et al. High repetition-rate, low jitter pulsed power generator for excimer laser applications[C]//Proceedings of the 25th International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. 2002: 605-607.
    [10]
    李伟. 脉冲功率系统中能量回收电路的改进[J]. 强激光与粒子束, 2019, 31:055001 doi: 10.11884/HPLPB201931.180359

    Li Wei. Improvement of energy recovery circuit in pulsed power system[J]. High Power Laser and Particle Beams, 2019, 31: 055001 doi: 10.11884/HPLPB201931.180359
    [11]
    李亚维, 邓建军, 谢敏, 等. 800 kV/100 Hz高功率微波驱动电源控制系统[J]. 高电压技术, 2009, 35(6):1426-1429

    Li Yawei, Deng Jianjun, Xie Min, et al. Control system of 800 kV/100 Hz high power microwave power supply[J]. High Voltage Engineering, 2009, 35(6): 1426-1429
    [12]
    Wu Lin, Wang Jun, Liu Zhigang, et al. Analysis and design of LC series converter considering effect of parasitic components[C]//Proceedings of 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. 2012: 126-130.
  • Relative Articles

    [1]Guo Linhui, Zhong Lixin, Lan Jianyu, Li Tao, Jiang Quanwei, Xie pengfei, Tan Hao, Sun Tangyou, Gao Songxin, Tang Chun. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004
    [2]Wang Jinchuan, Li Mi, Du Jialin, Wang Dan, Li Tenglong, Wang Juntao, Zhou Tangjian, Shang Jianli, Gao Qingsong. 1.8 mJ high magnification Nd:YAG slab picosecond laser amplifier[J]. High Power Laser and Particle Beams, 2022, 34(6): 061001. doi: 10.11884/HPLPB202234.210562
    [3]Lai Wenchang, Ma Pengfei, Xiao Hu, Liu Wei, Li Can, Jiang Man, Xu Jiangming, Su Rongtao, Leng Jinyong, Ma Yanxing, Zhou Pu. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. doi: 10.11884/HPLPB202032.200186
    [4]Xue Wenlong, Hu Chengzhi, Yue Wenjie, Jiang Junlin, Ding Yichen, Jiang Peipei, Wu Bo, Shen Yonghang. Yb-doped mode-locked fiber laser based on pre-chirp managed nonlinear amplification[J]. High Power Laser and Particle Beams, 2017, 29(09): 091001. doi: 10.11884/HPLPB201729.170105
    [5]Zhao Po, Yang Ruixia, Yan Lihua, An Zhenfeng. Wide-temperature-range and uncooled solid-state-laser[J]. High Power Laser and Particle Beams, 2016, 28(10): 101003. doi: 10.11884/HPLPB201628.151273
    [6]Fang Xiaoting, Yuan Shengfu, Hua Weihong, Yan Baozhu. Experimental study of small-scale direct current-discharge drived continuous-wave DF chemical laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111005. doi: 10.11884/HPLPB201527.111005
    [7]Wu Yijie, Peng Jiying, Yuan Ruixia. High repetition rate 1.34 μm Q-switched mode-locked Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111007. doi: 10.11884/HPLPB201527.111007
    [8]Liu Jiao, Wang Juntao, Zhou Tangjian, Gao Qingsong. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 2015, 27(06): 061015. doi: 10.11884/HPLPB201527.061015
    [9]Yao Wenming, Tan Huiming, Tian Yubing, Cui Jinjiang, Wang Fan, Dong Ningning. Continuously board-waveband tunable all-solid-state CW optical parametric oscillator based on PPMgLN[J]. High Power Laser and Particle Beams, 2013, 25(08): 2021-2026. doi: 10.3788/HPLPB20132508.2021
    [10]Zhang Zhiyong, Zhang Pu, Nie Zhiqiang, Li Xiaoning, Xiong Lingling, Liu Hui, Wang Zhenfu, Liu Xingsheng. Thermal crosstalk of high-power diode laser array[J]. High Power Laser and Particle Beams, 2013, 25(08): 1904-1910. doi: 10.3788/HPLPB20132508.1904
    [11]Qiao Hongchao, Zhao Jibin, Guo Qingyao. Development of laser system for laser peening[J]. High Power Laser and Particle Beams, 2013, 25(09): 2179-2180. doi: 10.3788/HPLPB20132509.2179
    [12]Li Bin, Li Lan, Jiao Luguang, Liu Liang, Zhou Qiong, Yuan Shengfu, Liu Wenguang. Heat transfer performance of water jet cooled mirror and its application in high power chemical lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 51-55.
    [13]Zhang Hui, Chen Yu, Wang Zhiteng, Zhao Chujun, Zhang Han. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807
    [14]Yue Desheng, Li WenYu, Wang HongYan, Yang Zining, Xu Xiaojun. Alkali-vapor laser-excimer pumped alkali laser[J]. High Power Laser and Particle Beams, 2012, 24(10): 2271-2276. doi: 10.3788/HPLPB20122410.2271
    [15]zhang xiang, feng chi, xie xiying, yan lelun, lei hong, li qiang. Nanosecond electro-optically Q-switched Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [16]zhang qiang, wang yuefeng, hou junyan, qiang jiping, lei chengqiang, zhu xiaolei, lu tingting, duan xintao. Simulation and experimentation of high power high repetition U folded resonator laser[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [17]zhang lei, lu yanhua, liu dong, tang chun, wang weimin, gao songxin. 6.2 W 589 nm yellow laser by extra-cavity sum-frequency[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [18]lu yanhua, zhang lei, liu dong, ma yi, tang chun, wang weimin. 7.13 W all-solid-state 1 319 nm macro-micro pulse laser[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [19]gao qing-song, tong li-xin, chen xiao-lin, chen jun, tang chun, feng guo-ying. High pulse repetition rate double-pass amplifier with the liquid phase conjugating mirror[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [20]huang zhi-long, liao da-xiong, zhang guo-biao. Test research on performance of the boundary scoop pumping diffuser[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.6 %FULLTEXT: 24.6 %META: 66.6 %META: 66.6 %PDF: 8.9 %PDF: 8.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.1 %[]: 0.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %乐山: 0.1 %乐山: 0.1 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %内江: 1.1 %内江: 1.1 %北京: 2.3 %北京: 2.3 %南京: 0.4 %南京: 0.4 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 1.1 %台州: 1.1 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %唐山: 0.6 %唐山: 0.6 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.3 %宜昌: 0.3 %宣城: 0.1 %宣城: 0.1 %常德: 0.6 %常德: 0.6 %广州: 0.9 %广州: 0.9 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.9 %张家口: 0.9 %悉尼: 0.4 %悉尼: 0.4 %惠州: 0.3 %惠州: 0.3 %成都: 5.6 %成都: 5.6 %新竹: 0.3 %新竹: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 1.7 %昆明: 1.7 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.1 %泰安: 0.1 %济南: 0.3 %济南: 0.3 %湖州: 0.6 %湖州: 0.6 %漯河: 0.7 %漯河: 0.7 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 35.9 %芒廷维尤: 35.9 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.3 %苏州: 0.3 %衡水: 0.1 %衡水: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 20.1 %西宁: 20.1 %西安: 1.3 %西安: 1.3 %诺沃克: 6.1 %诺沃克: 6.1 %贵阳: 0.4 %贵阳: 0.4 %资阳: 0.6 %资阳: 0.6 %运城: 1.3 %运城: 1.3 %遵义: 0.4 %遵义: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %金华: 0.3 %金华: 0.3 %长沙: 1.3 %长沙: 1.3 %黄冈: 0.1 %黄冈: 0.1 %其他其他Central DistrictSeattle[]东莞临汾丹东丽水乌鲁木齐乐山保定兰州内江北京南京博阿努瓦台州合肥哈尔滨哈尔科夫唐山嘉兴天津太原宁波宜昌宣城常德广州库比蒂诺廊坊张家口悉尼惠州成都新竹无锡昆明晋城普洱杭州武汉沈阳泰安济南湖州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥苏州衡水衢州西宁西安诺沃克贵阳资阳运城遵义郑州重庆金华长沙黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (466) PDF downloads(72) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return