Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
Citation: Yang Shaojie, Wang Bangji, Li Wei, et al. Design of an LC charging power supply with a boost structure[J]. High Power Laser and Particle Beams, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002

Design of an LC charging power supply with a boost structure

doi: 10.11884/HPLPB202335.230002
  • Received Date: 2023-01-05
  • Accepted Date: 2023-06-08
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-06-30
  • Publish Date: 2023-08-15
  • LC resonant charging scheme is suitable for high repetition rate pulse power system because of its simple circuit structure and control method, small size and high power efficiency. To make the LC resonant charging scheme with a higher boost range and improve its adaptability to supply voltage changes, this paper adopts a circuit topology with a boost structure, which enables the LC resonant charging scheme to have the ability to boost and reduce voltage. At the same time, it uses a control algorithm based on real-time energy detection, which enables the scheme to accurately charge and discharge according to preset parameters, and enhances the adaptability to supply voltage fluctuations. The preliminary experimental results show that the power supply can complete the regulation of voltage rise and fall when the supply voltage fluctuates, and the maximum voltage deviation is less than 5 V, thus it has higher charging accuracy and better charging consistency.
  • [1]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2]
    钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2):1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005

    Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005
    [3]
    Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [4]
    李名加, 康强, 常安碧, 等. 紧凑型重复频率高压脉冲变压器研制[J]. 高电压技术, 2009, 35(2):340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037

    Li Mingjia, Kang Qiang, Chang Anbi, et al. Development of a compact repetitive high-voltage pulse transformer[J]. High Voltage Engineering, 2009, 35(2): 340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037
    [5]
    甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30:065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [6]
    冯传均, 何泱, 戴文峰, 等. 串联谐振高压电容充电电源设计及分析[J]. 强激光与粒子束, 2019, 31:055002 doi: 10.11884/HPLPB201931.180355

    Feng Chuanjun, He Yang, Dai Wenfeng, et al. Design and analysis of series resonant high voltage capacitor charging power supply[J]. High Power Laser and Particle Beams, 2019, 31: 055002 doi: 10.11884/HPLPB201931.180355
    [7]
    张天洋. 高功率脉冲驱动源的初级储能充电系统及其关键技术研究[D]. 长沙: 国防科技大学, 2016

    Zhang Tianyang. Investigation of primary energy supply system in high power pulse generators and related technologies[D]. Changsha: National University of Defense Technology, 2016
    [8]
    乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30:085005 doi: 10.11884/HPLPB201830.170526

    Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005 doi: 10.11884/HPLPB201830.170526
    [9]
    Jiang W, Matsuda T, Yatsui K, et al. High repetition-rate, low jitter pulsed power generator for excimer laser applications[C]//Proceedings of the 25th International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. 2002: 605-607.
    [10]
    李伟. 脉冲功率系统中能量回收电路的改进[J]. 强激光与粒子束, 2019, 31:055001 doi: 10.11884/HPLPB201931.180359

    Li Wei. Improvement of energy recovery circuit in pulsed power system[J]. High Power Laser and Particle Beams, 2019, 31: 055001 doi: 10.11884/HPLPB201931.180359
    [11]
    李亚维, 邓建军, 谢敏, 等. 800 kV/100 Hz高功率微波驱动电源控制系统[J]. 高电压技术, 2009, 35(6):1426-1429

    Li Yawei, Deng Jianjun, Xie Min, et al. Control system of 800 kV/100 Hz high power microwave power supply[J]. High Voltage Engineering, 2009, 35(6): 1426-1429
    [12]
    Wu Lin, Wang Jun, Liu Zhigang, et al. Analysis and design of LC series converter considering effect of parasitic components[C]//Proceedings of 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. 2012: 126-130.
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zheng Wanguo, Tian Ye, Han Wei, Chai Xiangxu, Deng Xuewei, Liu Taixiang, Liao Wei. Research progress on loading capability of high-power solid-state laser facilities[J]. High Power Laser and Particle Beams, 2023, 35(6): 061001. doi: 10.11884/HPLPB202335.220402
    [3]Zong Zhaoyu, Zhao Junpu, Li Sen, Liang Yue, Yao Ke, Tian Xiaocheng, Huang Xiaoxia, Chen Bo, Zheng Wanguo. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34(3): 031011. doi: 10.11884/HPLPB202234.210288
    [4]Liu Lei, Wang Wentao, Wang Chao, Wang Gang, Liu Yang, Jia Youquan, Li Ning, Lv Kunpeng, Chen Lu. High power solid state laser operating in continuous / pulse composite mode[J]. High Power Laser and Particle Beams, 2022, 34(3): 031007. doi: 10.11884/HPLPB202234.210292
    [5]Guo Huaiwen, Zhou Wei, Ye Lang, Du Weifeng, Tan ning, Deng Xuewei, Huang Xiaoxia, Zhao Bowang, Zhong Wei, Wang Fang. Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2020, 32(6): 061002. doi: 10.11884/HPLPB202032.200046
    [6]Zheng Wanguo, Li Ping, Zhang Rui, Zhang Ying, Deng Xuewei, Xu Dangpeng, Huang Xiaoxia, Wang Fang, Zhao Junpu, Han Wei. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011003. doi: 10.11884/HPLPB202032.190469
    [7]Shi Yiping, Fan Yajun, Yi Chaolong, Zhu Sitao, Xia Wenfeng. Analysis of aperture antenna radiation characteristics fed by impulse signal on time domain[J]. High Power Laser and Particle Beams, 2016, 28(09): 093001. doi: 10.11884/HPLPB201628.151272
    [8]Chen Haiyan, Xiong Xiangzheng, Chen Kaiya, Liao Cheng. Simplified method for fast calculating time-domain radiation field of pulsed antenna arrays[J]. High Power Laser and Particle Beams, 2016, 28(08): 085003. doi: 10.11884/HPLPB201628.151295
    [9]Jia Rui, Zeng Yonghu, Wang Chuanchuan. Uniformity of electromagnetic field in a pulse excited reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103220. doi: 10.11884/HPLPB201527.103220
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, He Qun, Zhou Hai, Zheng Wanguo, Zhou Guorui. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beams, 2015, 27(03): 032033. doi: 10.11884/HPLPB201527.032033
    [11]Shi Lihua, Zhang Qi, Zhou Yinghui, Zhou Bihua. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25(02): 531-536. doi: 10.3788/HPLPB20132502.0531
    [12]Zeng Peiying, Tang Xiaoyun, Yang Xuedong, Ji Tong, Jiang Minhua, Zhu Baoqiang, Zhu Jianqiang, Liu Dekang, Shen Liren. Design of Shenguang-Ⅱ facility centralized control system[J]. High Power Laser and Particle Beams, 2012, 24(11): 2595-2598. doi: 10.3788/HPLPB20122411.2595
    [13]li hai, liang yue, zhao runchang, li ping. Waveform control technique of high power laser pulse shaping[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [14]wang bin, zhang tao, yang pengqian, wang yong, zhu jianqiang. Piezoelectric stepper actuator in high power laser facility[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]yu ying, zhao feng, li wenbo, zhang lin, yuan xiaodong. Measurement and analysis of airborne molecular contaminants in high power laser facility[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [16]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]liu hong-jie, jing feng, zuo yan-lei, wei xiao-feng, hu dong-xia, peng zhi-tao, li qiang, zhou wei, zhang kun, jiang lei, li zhi-jun, zuo ming. Nonlinear propagation of localized wavefront deformation in high-power laser facility[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]yang jing, zhang xiao-min, wang wen-yi, su jing-qin, jing feng, hu dong-xia, yuan jing, shi zhi-quan, zhang rui. Improving output capability of high-power laser at short pulse duration using different laser glasses together in amplifier[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [19]yang jing, zhang xiao-min, hu dong-xia, su jing-qin, wang wen-yi, yuan jing, shi zhi-quan, xu lan, . Comprehensive evaluation for system design of high- power laser facility[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [20]lin zun-qi, wang shi-ji, fan dian-yuan, gu yuan, zheng zhi-jian, zhu jian-qiang, zhu jian, cai xi-jie, huang guan-long, dai ya-ping, yang yi. Successful operation of 8 beam SG-Ⅱlaserfacility for both 1w 0 and 3w 0 output[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(3)

    1. Shengtao LIN,Zinan WANG,Jiaojiao ZHANG,Pan WANG,Han WU,Yifei QI. Radiation build-up and dissipation in Raman random fiber laser. Science China(Information Sciences). 2024(01): 254-260 .
    2. 马小雅,叶俊,梁峻锐,何俊鸿,张扬,许将明,周朴,姜宗福. 基于随机光纤激光器的多奇点涡旋光束. 光学学报. 2024(10): 401-411 .
    3. 杨茜,周泽中,张祖兴. 频率间隔可切换多波长随机光纤激光器. 光子学报. 2022(12): 64-71 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 69.5 %META: 69.5 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.5 %其他: 0.5 %Canada: 0.4 %Canada: 0.4 %China: 0.7 %China: 0.7 %Edinburg: 0.0 %Edinburg: 0.0 %Germany: 0.2 %Germany: 0.2 %India: 0.3 %India: 0.3 %Indianapolis: 0.2 %Indianapolis: 0.2 %Jaipur: 0.3 %Jaipur: 0.3 %Mexico: 0.1 %Mexico: 0.1 %Pakistan: 0.1 %Pakistan: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Russian Federation: 0.5 %Russian Federation: 0.5 %Spain: 0.5 %Spain: 0.5 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %上海: 4.0 %上海: 4.0 %东莞: 0.7 %东莞: 0.7 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伯克利: 0.1 %伯克利: 0.1 %保定: 0.4 %保定: 0.4 %信阳: 0.1 %信阳: 0.1 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %北京: 6.3 %北京: 6.3 %北海: 0.0 %北海: 0.0 %十堰: 0.3 %十堰: 0.3 %南京: 0.2 %南京: 0.2 %南昌: 0.0 %南昌: 0.0 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.6 %合肥: 0.6 %吉隆坡: 0.1 %吉隆坡: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %孟买: 0.1 %孟买: 0.1 %宁波: 0.2 %宁波: 0.2 %安德森: 0.0 %安德森: 0.0 %宜春: 0.2 %宜春: 0.2 %宣城: 0.3 %宣城: 0.3 %川崎: 0.1 %川崎: 0.1 %巴格达: 0.1 %巴格达: 0.1 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %广州: 1.0 %广州: 1.0 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.3 %张家口: 0.3 %张家界: 0.3 %张家界: 0.3 %怀化: 0.0 %怀化: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 5.7 %成都: 5.7 %扬州: 0.2 %扬州: 0.2 %斯特拉斯堡: 0.1 %斯特拉斯堡: 0.1 %新乡: 0.0 %新乡: 0.0 %新奥尔良: 0.0 %新奥尔良: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.9 %杭州: 0.9 %桂林: 0.2 %桂林: 0.2 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 2.7 %深圳: 2.7 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.8 %漯河: 0.8 %潘普洛纳: 0.2 %潘普洛纳: 0.2 %烟台: 0.0 %烟台: 0.0 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.3 %莫斯科: 0.3 %菏泽: 0.1 %菏泽: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.3 %西宁: 32.3 %西安: 0.6 %西安: 0.6 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.6 %郑州: 1.6 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %锦州: 0.0 %锦州: 0.0 %长春: 0.6 %长春: 0.6 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %雪兰莪: 0.1 %雪兰莪: 0.1 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他CanadaChinaEdinburgGermanyIndiaIndianapolisJaipurMexicoPakistanRochesterRussian FederationSpainUnited States[]上海东莞中卫中山临汾丹东丽水伊利诺伊州伯克利保定信阳兰州内江加利福尼亚州北京北海十堰南京南昌厦门台州合肥吉隆坡哈尔滨哥伦布嘉兴圣塞瓦斯蒂安德洛斯雷埃斯天津太原孟买宁波安德森宜春宣城川崎巴格达常州常德广州库比蒂诺廊坊张家口张家界怀化惠州成都扬州斯特拉斯堡新乡新奥尔良昆明晋城普洱杭州桂林榆林武汉汕头沈阳洛杉矶洛阳济南深圳温州湖州湘潭漯河潘普洛纳烟台盐城石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科菏泽衡阳衢州襄阳西宁西安西雅图贵阳费利蒙运城邯郸郑州鄂州重庆金华锦州长春长沙长治雪兰莪青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (460) PDF downloads(72) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return