Wang Xuede, Li Yiming, Nie Xiangfan, et al. Effects of micro-scale laser shock peening on surface integrity of DZ17G alloy[J]. High Power Laser and Particle Beams, 2017, 29: 089001. doi: 10.11884/HPLPB201729.160550
Citation: He Zhihan, Hong Juting, Yan Liping, et al. Modeling and application of electromagnetic coupling cross section of building walls[J]. High Power Laser and Particle Beams, 2023, 35: 053006. doi: 10.11884/HPLPB202335.230006

Modeling and application of electromagnetic coupling cross section of building walls

doi: 10.11884/HPLPB202335.230006
  • Received Date: 2023-01-10
  • Accepted Date: 2023-03-20
  • Rev Recd Date: 2023-03-20
  • Available Online: 2023-03-22
  • Publish Date: 2023-04-07
  • The electromagnetic waves radiating inside a building can cause reverberation effect, which can be evaluated using power balance method (PWB) to quickly determine the field level of indoor electromagnetic environment. However, the current calculation models of wall coupling cross section (CCS) in PWB method for electricallally large enclosure are based on the assumption that electromagnetic waves cannot penetrate through the enclosure walls. As a result, these models are not applicable for calculating the CCS of penetrable indoor building walls. To address this issue, a novel CCS model applicable for building walls with finite thickness is presented. The proposed CCS model considers the thickness and electromagnetic characteristics of building walls and can effectively reflect the effects of electromagnetic wave’s multiple reflections inside the walls on the indoor electromagnetic environment. The proposed model has been employed to estimate the indoor electric field level. The predicted results agree with the measurements, which validates the proposed CCS model for building walls with finite thickness.
  • [1]
    Obeidat H, Alabdullah A, Elkhazmi E, et al. Indoor environment propagation review[J]. Computer Science Review, 2020, 37: 100272. doi: 10.1016/j.cosrev.2020.100272
    [2]
    Steinböck G, Pedersen T, Fleury B H, et al. Experimental validation of the reverberation effect in room electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2041-2053. doi: 10.1109/TAP.2015.2423636
    [3]
    Yusuf M, Tanghe E, Martinez-Ingles M T, et al. Frequency-dependence characterization of electromagnetic reverberation in indoor scenarios based on 1- 40 GHz channel measurements[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2175-2179. doi: 10.1109/LAWP.2019.2939662
    [4]
    Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [5]
    Hill D A. A reflection coefficient derivation for the Q of a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(4): 591-592. doi: 10.1109/15.544314
    [6]
    Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods[C]//Proceedings of 2011 International Conference on Electromagnetics in Advanced Applications. 2011: 68-71.
    [7]
    贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34:113003 doi: 10.11884/HPLPB202234.220039

    Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003 doi: 10.11884/HPLPB202234.220039
    [8]
    欧阳婷, 刘强, 赵翔. 有球形损耗物的矩形开孔电大腔的PWB分析[J]. 无线电工程, 2017, 47(8):71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17

    Ouyang Ting, Liu Qiang, Zhao Xiang. Application of PWB method in the analysis of EM-field environment in an electrically large cavity with rectangular aperture when a spherical loss material inside[J]. Radio Engineering, 2017, 47(8): 71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17
    [9]
    Lee H H, Lee J W. Analysis of electromagnetic effect inside large-scaled building by external electromagnetic wave using PWB method[C]//Proceedings of 2018 International Symposium on Antennas and Propagation (ISAP). 2018: 1-2.
    [10]
    Balanis C A. Advanced engineering electromagnetics[M]. New York: Wiley, 1989.
    [11]
    德马雷斯特. 工程电磁学[M]. 北京: 科学出版社, 2003

    Demarest K R. Engineering electromagnetics[M]. Beijing: Science Press, 2003
    [12]
    Jensen P D, Meaney P M, Epstien N R, et al. Cole-Cole parameter characterization of urea and potassium for improving dialysis treatment assessment[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1598-1601. doi: 10.1109/LAWP.2012.2237536
    [13]
    Zhekov S S, Franek O, Pedersen G F. Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner][J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 72-81. doi: 10.1109/MAP.2019.2955680
    [14]
    杨柳, 朱新荣, 刘大龙, 等. 建筑物理[M]. 北京: 中国建材工业出版社, 2014

    Yang Liu, Zhu Xinrong, Liu Dadong, et al. Architectural physics[M]. Beijing: China Building Materials Industry Press, 2014
    [15]
    杨春宇, 唐鸣放, 谢辉. 建筑物理(图解版)[M]. 2版. 北京: 中国建材工业出版社, 2021

    Yang Chunyu, Tang Mingfang, Xie Hui, et al. Building physics (graphic edition)[M]. 2nd ed. Beijing: China Building Materials Industry Press, 2021
    [16]
    王成平, 王远东. 建筑材料与检测[M]. 北京: 北京理工大学出版社, 2021

    Wang Chengping, Wang Yuandong. Building materials and testing[M]. Beijing: Beijing Institute of Technology Press, 2021
    [17]
    郭山红, 孙锦涛, 谢仁宏, 等. 电磁波穿透墙体的衰减特性[J]. 强激光与粒子束, 2009, 21(1):113-117

    Guo Shanhong, Sun Jintao, Xie Renhong, et al. Attenuation characteristics of electromagnetic wave penetrating walls[J]. High Power Laser and Particle Beams, 2009, 21(1): 113-117
    [18]
    赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079

    Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
    [19]
    胡明浪, 周世华, 闫丽萍, 等. 基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证[J]. 强激光与粒子束, 2022, 34:053002 doi: 10.11884/HPLPB202234.220026

    Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002 doi: 10.11884/HPLPB202234.220026
    [20]
    Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 2005, 25(7/8): 603-622.
  • Relative Articles

    [1]Xiao Hu, Pan Zhiyong, Chen Zilun, Ma Pengfei, Liu Wei, Yang Huan, Yan Zhiping, Wang Meng, Xi Xiaoming, Li Zhixian, Yang Baolai, Yang Linyong, Huang Liangjin, Huang Zhihe, Cao Jianqiu, Wang Xiaolin, Wang Zefeng, Chen Jinbao. 20 kW fiber laser with high beam quality enabled by tapered ytterbium-doped fiber[J]. High Power Laser and Particle Beams, 2024, 36(1): 011001. doi: 10.11884/HPLPB202436.230418
    [2]Xi Xiaoming, Yang Baolai, Zhang Hanwei, Pan Zhiyong, Huang Liangjin, Wang Peng, Yang Huan, Shi Chen, Yan Zhiping, Chen Zilun, Wang Xiaolin, Han Kai, Wang Zefeng, Zhou Pu, Xu Xiaojun. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35(2): 021001. doi: 10.11884/HPLPB202335.220424
    [3]Liu Jiaqi, Zeng Lingfa, Shi Chen, Wu Hanshuo, Wang Peng, Xi Xiaoming, Zhang Hanwei, Wang Xiaolin, Xi Fengjie. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35(8): 081003. doi: 10.11884/HPLPB202335.230201
    [4]Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070
    [5]Yang Baolai, Yang Huan, Ye Yun, Xi Xiaoming, Zhang Hanwei, Huang Liangjin, Wang Peng, Shi Chen, Wang Xiaolin, Yan Zhiping, Pan Zhiyong, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 6 kW broadband fiber laser based on home-made ytterbium-doped fiber with gradually varying spindle-shape structure[J]. High Power Laser and Particle Beams, 2022, 34(8): 081001. doi: 10.11884/HPLPB202234.220220
    [6]Wang Peng, Xi Xiaoming, Zhang Hanwei, Yang Baolai, Shi Chen, Xiao Hu, Chen Zilun, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 34(12): 121001. doi: 10.11884/HPLPB202234.220247
    [7]Zhang Chun, Xie Lianghua, Chu Qiuhui, Liu Yu, Huang Shan, Song Huaqing, Wu Wenjie, Feng Xi, Li Min, Shen Benjian, Li Haokun, Tao Rumao, Xu Lixin, Wang Jianjun. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002. doi: 10.11884/HPLPB202234.210251
    [8]Wang Li, Wang Xiaoling, Zhang Hanwei, Chen Zilun, Xu Xiaojun. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33(11): 111011. doi: 10.11884/HPLPB202133.210225
    [9]Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, Wang Peng, Yang Baolai, Wang Xiaolin, Xu Xiaojun. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33(7): 071001. doi: 10.11884/HPLPB202133.210245
    [10]Xiao Hu, Leng Jinyong, Zhang Hanwei, Huang Liangjin, Guo Shaofeng, Zhou Pu, Chen Jinbao. A 2.14 kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(01): 010103. doi: 10.11884/HPLPB201527.010103
    [11]Du Wenbo, Wang Xiaolin, Zhu Jiajian, Zhou Pu, Xu Xiaojun, Shu Bohong. Suppression of stimulated Brillouin scattering effect in fiber amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(03): 598-602. doi: 10.3788/HPLPB20132503.0598
    [12]Wang Hailin, Huang Weicun, Hong Xinhua. Mode field evolution in 1 550 nm single-mode tapered fiber[J]. High Power Laser and Particle Beams, 2012, 24(05): 1052-1056. doi: 10.3788/HPLPB20122405.1052
    [13]zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [14]zhao zhen-yu, duan kai-liang, wang jian-ming, zhao wei, wang yi-shan. Experimental study of gain characteristics of high power photonic crystal fiber amplifier[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [15]li jing-qin, pan wei, luo bin, zou xi-hua, zhang wei-li, zhou zhi. Stimulated Raman scattering and thermal stress in double clad fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [16]hou jing, xiao rui, jiang zong-fu, shu bo-hong, cheng jin-bao, liu ze-jin. Coherent beam combination of three ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [17]ding guang-lei, shen hua, yang ling-zhen, wang yi-shan, zhao wei, chen guo-fu. High repetition rate femtosecond Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]chen ji-xin, sui zhan, chen fu-shen, liu zhi-qiang, li ming-zhong, wang jian-jun, luo yi-ming. Stimulated Raman scattering and thermal effect in high power double clad fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [19]shen hua, ding guang-lei, wang yi-shan, zhao wei. Experiment of cladding pumped femtosecond fiber amplifier[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [20]ding guang-lei, shen hua, yang ling-zhen, zhao wei, chen guo-fu, duan zuo-liang, cheng zhao. ps fiber amplifier and gratings compressor[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
  • Cited by

    Periodical cited type(5)

    1. 杨保来,王鹏,奚小明,马鹏飞,王小林,王泽锋. LD泵浦高平均功率、高光束质量掺镱光纤激光振荡器与放大器研究进展. 光学学报. 2023(17): 150-170 .
    2. 张志伦,林贤峰,李文臻,徐中巍,廖雷,陈瑰,褚应波,邢颍滨,李海清,彭景刚,戴能利,李进延. 低数值孔径部分掺杂纺锤形光纤实现4 kW近衍射极限激光输出. 中国激光. 2022(13): 173-176 .
    3. 奚小明,曾令筏,张汉伟,王鹏,杨保来,王小林,许晓军. 5 kW振荡放大一体化高可靠性光纤激光器. 强激光与粒子束. 2021(07): 45-47 . 本站查看
    4. 肖起榕,田佳丁,李丹,齐天澄,王泽晖,于伟龙,吴与伦,闫平,巩马理. 级联泵浦高功率掺镱光纤激光器:进展与展望. 中国激光. 2021(15): 66-86 .
    5. 王力,王小林,张汉伟,陈子伦,许晓军. 变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究. 强激光与粒子束. 2021(11): 96-101 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.1 %FULLTEXT: 23.1 %META: 70.4 %META: 70.4 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 1.3 %其他: 1.3 %Bradford: 0.3 %Bradford: 0.3 %China: 1.5 %China: 1.5 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Netherlands: 0.0 %Netherlands: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.1 %Taichung: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Turkey: 0.0 %Turkey: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 2.5 %上海: 2.5 %东京: 0.2 %东京: 0.2 %东莞: 0.0 %东莞: 0.0 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %乌兰察布: 0.0 %乌兰察布: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %京畿道: 0.2 %京畿道: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %北京: 7.6 %北京: 7.6 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %台州: 0.3 %台州: 0.3 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %夏洛特: 0.1 %夏洛特: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.7 %天津: 0.7 %太原: 0.0 %太原: 0.0 %威海: 0.2 %威海: 0.2 %娄底: 0.0 %娄底: 0.0 %安卡拉: 0.2 %安卡拉: 0.2 %安大略: 0.1 %安大略: 0.1 %安顺: 0.1 %安顺: 0.1 %宣城: 0.3 %宣城: 0.3 %巴中: 0.0 %巴中: 0.0 %常州: 0.0 %常州: 0.0 %广元: 0.0 %广元: 0.0 %广州: 1.2 %广州: 1.2 %张家口: 0.8 %张家口: 0.8 %徐州: 0.1 %徐州: 0.1 %德克萨斯: 0.1 %德克萨斯: 0.1 %德州: 0.1 %德州: 0.1 %成都: 1.6 %成都: 1.6 %斯涅任斯克: 0.1 %斯涅任斯克: 0.1 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 1.2 %武汉: 1.2 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %深圳: 1.8 %深圳: 1.8 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.0 %潍坊: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.1 %珠海: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.7 %绵阳: 0.7 %美国: 0.1 %美国: 0.1 %芒廷维尤: 19.0 %芒廷维尤: 19.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 36.8 %西宁: 36.8 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %贺州: 0.0 %贺州: 0.0 %达州: 0.0 %达州: 0.0 %运城: 1.4 %运城: 1.4 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.0 %邯郸: 0.0 %邵阳: 0.0 %邵阳: 0.0 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长春: 0.5 %长春: 0.5 %长沙: 3.3 %长沙: 3.3 %长沙市开福区: 0.0 %长沙市开福区: 0.0 %长治: 0.5 %长治: 0.5 %阿菲永卡拉希萨尔: 0.1 %阿菲永卡拉希萨尔: 0.1 %青岛: 0.4 %青岛: 0.4 %韦科: 0.1 %韦科: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黑尔福德: 0.0 %黑尔福德: 0.0 %黔南: 0.1 %黔南: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他BradfordChinaIndiaIran (ISLAMIC Republic Of)Korea Republic ofNetherlandsSeattleSingaporeTaichungTaiwan, ChinaTurkeyUnited States[]三明上海东京东莞中山临汾乌兰察布亚特兰大京畿道佛山保定六安兰州北京华盛顿州南京南宁南昌台州台湾省合肥哈尔滨哥伦布商丘嘉兴夏洛特大庆大连天津太原威海娄底安卡拉安大略安顺宣城巴中常州广元广州张家口徐州德克萨斯德州成都斯涅任斯克无锡日照昆明晋城普洱杭州梅州武汉洛阳济南淄博深圳温州湖州湘潭漯河潍坊焦作玉林珠海班加罗尔石家庄福州绍兴绵阳美国芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳贺州达州运城连云港邯郸邵阳郑州鄂州重庆长春长沙长沙市开福区长治阿菲永卡拉希萨尔青岛韦科黄冈黑尔福德黔南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (454) PDF downloads(67) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return