Ni Xiaolong, Zhu Xufang, Yu Xin, et al. Laser beam coherence and divergence angle complex controlling technique[J]. High Power Laser and Particle Beams, 2020, 32: 071008. doi: 10.11884/HPLPB202032.200078
Citation: He Zhihan, Hong Juting, Yan Liping, et al. Modeling and application of electromagnetic coupling cross section of building walls[J]. High Power Laser and Particle Beams, 2023, 35: 053006. doi: 10.11884/HPLPB202335.230006

Modeling and application of electromagnetic coupling cross section of building walls

doi: 10.11884/HPLPB202335.230006
  • Received Date: 2023-01-10
  • Accepted Date: 2023-03-20
  • Rev Recd Date: 2023-03-20
  • Available Online: 2023-03-22
  • Publish Date: 2023-04-07
  • The electromagnetic waves radiating inside a building can cause reverberation effect, which can be evaluated using power balance method (PWB) to quickly determine the field level of indoor electromagnetic environment. However, the current calculation models of wall coupling cross section (CCS) in PWB method for electricallally large enclosure are based on the assumption that electromagnetic waves cannot penetrate through the enclosure walls. As a result, these models are not applicable for calculating the CCS of penetrable indoor building walls. To address this issue, a novel CCS model applicable for building walls with finite thickness is presented. The proposed CCS model considers the thickness and electromagnetic characteristics of building walls and can effectively reflect the effects of electromagnetic wave’s multiple reflections inside the walls on the indoor electromagnetic environment. The proposed model has been employed to estimate the indoor electric field level. The predicted results agree with the measurements, which validates the proposed CCS model for building walls with finite thickness.
  • [1]
    Obeidat H, Alabdullah A, Elkhazmi E, et al. Indoor environment propagation review[J]. Computer Science Review, 2020, 37: 100272. doi: 10.1016/j.cosrev.2020.100272
    [2]
    Steinböck G, Pedersen T, Fleury B H, et al. Experimental validation of the reverberation effect in room electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2041-2053. doi: 10.1109/TAP.2015.2423636
    [3]
    Yusuf M, Tanghe E, Martinez-Ingles M T, et al. Frequency-dependence characterization of electromagnetic reverberation in indoor scenarios based on 1- 40 GHz channel measurements[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2175-2179. doi: 10.1109/LAWP.2019.2939662
    [4]
    Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [5]
    Hill D A. A reflection coefficient derivation for the Q of a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(4): 591-592. doi: 10.1109/15.544314
    [6]
    Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods[C]//Proceedings of 2011 International Conference on Electromagnetics in Advanced Applications. 2011: 68-71.
    [7]
    贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34:113003 doi: 10.11884/HPLPB202234.220039

    Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003 doi: 10.11884/HPLPB202234.220039
    [8]
    欧阳婷, 刘强, 赵翔. 有球形损耗物的矩形开孔电大腔的PWB分析[J]. 无线电工程, 2017, 47(8):71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17

    Ouyang Ting, Liu Qiang, Zhao Xiang. Application of PWB method in the analysis of EM-field environment in an electrically large cavity with rectangular aperture when a spherical loss material inside[J]. Radio Engineering, 2017, 47(8): 71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17
    [9]
    Lee H H, Lee J W. Analysis of electromagnetic effect inside large-scaled building by external electromagnetic wave using PWB method[C]//Proceedings of 2018 International Symposium on Antennas and Propagation (ISAP). 2018: 1-2.
    [10]
    Balanis C A. Advanced engineering electromagnetics[M]. New York: Wiley, 1989.
    [11]
    德马雷斯特. 工程电磁学[M]. 北京: 科学出版社, 2003

    Demarest K R. Engineering electromagnetics[M]. Beijing: Science Press, 2003
    [12]
    Jensen P D, Meaney P M, Epstien N R, et al. Cole-Cole parameter characterization of urea and potassium for improving dialysis treatment assessment[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1598-1601. doi: 10.1109/LAWP.2012.2237536
    [13]
    Zhekov S S, Franek O, Pedersen G F. Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner][J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 72-81. doi: 10.1109/MAP.2019.2955680
    [14]
    杨柳, 朱新荣, 刘大龙, 等. 建筑物理[M]. 北京: 中国建材工业出版社, 2014

    Yang Liu, Zhu Xinrong, Liu Dadong, et al. Architectural physics[M]. Beijing: China Building Materials Industry Press, 2014
    [15]
    杨春宇, 唐鸣放, 谢辉. 建筑物理(图解版)[M]. 2版. 北京: 中国建材工业出版社, 2021

    Yang Chunyu, Tang Mingfang, Xie Hui, et al. Building physics (graphic edition)[M]. 2nd ed. Beijing: China Building Materials Industry Press, 2021
    [16]
    王成平, 王远东. 建筑材料与检测[M]. 北京: 北京理工大学出版社, 2021

    Wang Chengping, Wang Yuandong. Building materials and testing[M]. Beijing: Beijing Institute of Technology Press, 2021
    [17]
    郭山红, 孙锦涛, 谢仁宏, 等. 电磁波穿透墙体的衰减特性[J]. 强激光与粒子束, 2009, 21(1):113-117

    Guo Shanhong, Sun Jintao, Xie Renhong, et al. Attenuation characteristics of electromagnetic wave penetrating walls[J]. High Power Laser and Particle Beams, 2009, 21(1): 113-117
    [18]
    赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079

    Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
    [19]
    胡明浪, 周世华, 闫丽萍, 等. 基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证[J]. 强激光与粒子束, 2022, 34:053002 doi: 10.11884/HPLPB202234.220026

    Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002 doi: 10.11884/HPLPB202234.220026
    [20]
    Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 2005, 25(7/8): 603-622.
  • Relative Articles

    [1]Qiang Xiwen, Wu Min, Zong Fei, Zhai Shengwei, Hu Yuehong, Feng Shuanglian, Zhao Junwei, Chang Jinyong. High-precision measurement technique of isoplanatic angle[J]. High Power Laser and Particle Beams, 2021, 33(8): 081008. doi: 10.11884/HPLPB202133.210215
    [2]Hu Xiaodan, Su Changdong, Luo Tao, Qing Chun, Sun Gang, Liu Qing, Li Xuebin, Zhu Wenyue, Wu Xiaoqing. Estimating the profiles of atmospheric turbulence above Korla, Maoming, Lhasa by Thorpe scale[J]. High Power Laser and Particle Beams, 2019, 31(8): 081002. doi: 10.11884/HPLPB201931.190074
    [3]Xu Chunyan, Zhan Guowei, Qing Chun, Cai Jun, Wu Xiaoqing. Estimation and measurement of optical turbulence over land and offshore[J]. High Power Laser and Particle Beams, 2018, 30(2): 021003. doi: 10.11884/HPLPB201830.170296
    [4]Zhang Peng, Qin Kaiyu, Jiang Dagang, Deng Ke, Yao Zhoushi. Analysis of heterodyne efficiency of near earth coherent laser communication links[J]. High Power Laser and Particle Beams, 2015, 27(04): 041006. doi: 10.11884/HPLPB201527.041006
    [5]Wang Qian, Mei Haiping, Xiao Shumei, Huang Honghua, Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Fractal and intermittency analysis of atmospheric optical turbulence near ground[J]. High Power Laser and Particle Beams, 2014, 26(02): 021010. doi: 10.3788/HPLPB201426.021010
    [6]Huang Dequan, Zhou Wenchao, Qiu Hong, Zhang Jianzhu, Yun Yu, Tian Xiaoqiang. Research on measurement of atmospheric coherence length using Shack-Hartmann wavefront sensor[J]. High Power Laser and Particle Beams, 2014, 26(08): 081003. doi: 10.11884/HPLPB201426.081003
    [7]Wu Fengtie, Chen Jing, Cheng Zhiming. Influence of base angle and focal length of vaulted axicons on bottle beams[J]. High Power Laser and Particle Beams, 2013, 25(03): 569-573. doi: 10.3788/HPLPB20132503.0569
    [8]Liu Jun, Wang Shaopeng, Gao Ming. Scintillation of polarized and partially coherent laser beam scattered by diffuse target and propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2013, 25(01): 31-36. doi: 10.3788/HPLPB20132501.0031
    [9]li Fei, Wu Yi, Hou Zaihong. Data processing of scintillation index measurement in real atmosphere[J]. High Power Laser and Particle Beams, 2012, 24(06): 1349-1352. doi: 10.3788/HPLPB20122406.1349
    [10]li peng, zheng yi, han chao, fan jiangbing, song lijun, geng na, xiang zhen, zhang yijun. Observation of lightning optical signals with photodiode detector[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [11]ma haotong, zhou pu, wang xiaolin, ma yanxing, wang xiaobo, xu xiaojun, liu zejin. Generation of dark hollow beam with phase-only liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [12]rao lianzhou, zheng xiaoxia, xiao boqi. Radiation forces of focused partially coherent vortex beams on a dielectric sphere[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [13]qiao chun-hong, fan cheng-yu, wang ying-jian, feng xiao-xing, cheng dong-jie. Simulation experiment of high energy laser propagation in the atmosphere[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [14]liu hou-tong, li chao, wang zhen-zhu, huang wei, zhou jun. Analysis on eye safety of airborne atmosphere detection lidar and eye safety[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [15]shao shi-yong, hao lei, huang yin-bo, rao rui-zhong. Light scattering by prolate ice cylinder[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [16]liang li-zhen, hu chun-dong, liu zhi-min, hu li-qun. Effect of neutral beam quality on design of window in bending system[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]huang yin-bo, wang ying-jian. Effect of the measurement errors of atmospheric parameters on the laser propagation effects[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [18]gao chong, ma jing, tan li-ying. Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [19]liu jian-bin, wu jian. Light scattering model and angular spectrum of scattering intensity in fogs[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [20]wu xiao qing, wang ying jian, rao rui zhong, zeng zong yong, gong zhi ben. Experiment verification of numerical model of atmospheric optical refractive index structure parameter [J]. High Power Laser and Particle Beams, 2003, 15(02): 0- .
  • Cited by

    Periodical cited type(5)

    1. 董大鹏,于信,汪逸群,潘国涛,白素平. 0.05~0.1 MPa宽气压环境下校准光源光学系统设计. 光学精密工程. 2023(08): 1124-1135 .
    2. 王华,王玲维,黄汉云. 基于大数据的低照度微弱点目标激光成像方法. 激光杂志. 2023(09): 182-187 .
    3. 陶宗慧,刘唯奇,陈亚楠,倪小龙,娄岩,刘显著,姜会林. 大气信道激光通信系统光束偏振特性. 兵工学报. 2022(03): 481-488 .
    4. 王姝懿,刘智,林鹏,刘树通,刘艺. 基于液晶空间光调制器的激光束散角控制技术. 液晶与显示. 2022(11): 1430-1438 .
    5. 李伟,朱敏,左常玲. 低信噪比环境下光斑图像信号的定位优化研究. 重庆科技学院学报(自然科学版). 2022(05): 70-74 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 82.4 %META: 82.4 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.6 %其他: 0.6 %China: 1.1 %China: 1.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Saitama: 0.2 %Saitama: 0.2 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.2 %United States: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.8 %上海: 1.8 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.2 %佛山: 0.2 %保定: 0.0 %保定: 0.0 %北京: 16.0 %北京: 16.0 %十堰: 0.1 %十堰: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.0 %四平: 0.0 %埃森: 0.0 %埃森: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %太原: 0.2 %太原: 0.2 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %宣城: 0.1 %宣城: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 1.1 %张家口: 1.1 %徐州: 0.0 %徐州: 0.0 %德里: 0.1 %德里: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.0 %景德镇: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.1 %杭州: 1.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.0 %沃思堡: 0.0 %沈阳: 0.0 %沈阳: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.8 %漯河: 0.8 %烟台: 0.0 %烟台: 0.0 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.0 %绵阳: 0.0 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 44.5 %西宁: 44.5 %西安: 0.6 %西安: 0.6 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.8 %运城: 0.8 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %铜陵: 0.1 %铜陵: 0.1 %长春: 1.2 %长春: 1.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %阳泉: 0.1 %阳泉: 0.1 %香港: 0.1 %香港: 0.1 %其他其他ChinaKao-sungSaitamaSeattleTaichungUnited States[]上海中山临汾丹东佛山保定北京十堰华盛顿州南京南宁博阿努瓦厦门台州合肥吉林呼和浩特哈尔滨哥伦布嘉兴四平埃森大连天津太原宁波安康宣城广州张家口徐州德里惠州成都扬州新乡无锡晋城普洱景德镇朝阳杭州武汉沃思堡沈阳深圳温州湖州漯河烟台石家庄秦皇岛绵阳罗奥尔凯埃芒廷维尤芝加哥苏州衢州西宁西安西雅图贵阳运城郑州重庆铜陵长春长沙长治阳泉香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (454) PDF downloads(67) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return