Citation: | He Zhihan, Hong Juting, Yan Liping, et al. Modeling and application of electromagnetic coupling cross section of building walls[J]. High Power Laser and Particle Beams, 2023, 35: 053006. doi: 10.11884/HPLPB202335.230006 |
[1] |
Obeidat H, Alabdullah A, Elkhazmi E, et al. Indoor environment propagation review[J]. Computer Science Review, 2020, 37: 100272. doi: 10.1016/j.cosrev.2020.100272
|
[2] |
Steinböck G, Pedersen T, Fleury B H, et al. Experimental validation of the reverberation effect in room electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2041-2053. doi: 10.1109/TAP.2015.2423636
|
[3] |
Yusuf M, Tanghe E, Martinez-Ingles M T, et al. Frequency-dependence characterization of electromagnetic reverberation in indoor scenarios based on 1- 40 GHz channel measurements[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2175-2179. doi: 10.1109/LAWP.2019.2939662
|
[4] |
Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
|
[5] |
Hill D A. A reflection coefficient derivation for the Q of a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(4): 591-592. doi: 10.1109/15.544314
|
[6] |
Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods[C]//Proceedings of 2011 International Conference on Electromagnetics in Advanced Applications. 2011: 68-71.
|
[7] |
贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34:113003 doi: 10.11884/HPLPB202234.220039
Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003 doi: 10.11884/HPLPB202234.220039
|
[8] |
欧阳婷, 刘强, 赵翔. 有球形损耗物的矩形开孔电大腔的PWB分析[J]. 无线电工程, 2017, 47(8):71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17
Ouyang Ting, Liu Qiang, Zhao Xiang. Application of PWB method in the analysis of EM-field environment in an electrically large cavity with rectangular aperture when a spherical loss material inside[J]. Radio Engineering, 2017, 47(8): 71-74 doi: 10.3969/j.issn.1003-3106.2017.08.17
|
[9] |
Lee H H, Lee J W. Analysis of electromagnetic effect inside large-scaled building by external electromagnetic wave using PWB method[C]//Proceedings of 2018 International Symposium on Antennas and Propagation (ISAP). 2018: 1-2.
|
[10] |
Balanis C A. Advanced engineering electromagnetics[M]. New York: Wiley, 1989.
|
[11] |
德马雷斯特. 工程电磁学[M]. 北京: 科学出版社, 2003
Demarest K R. Engineering electromagnetics[M]. Beijing: Science Press, 2003
|
[12] |
Jensen P D, Meaney P M, Epstien N R, et al. Cole-Cole parameter characterization of urea and potassium for improving dialysis treatment assessment[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1598-1601. doi: 10.1109/LAWP.2012.2237536
|
[13] |
Zhekov S S, Franek O, Pedersen G F. Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner][J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 72-81. doi: 10.1109/MAP.2019.2955680
|
[14] |
杨柳, 朱新荣, 刘大龙, 等. 建筑物理[M]. 北京: 中国建材工业出版社, 2014
Yang Liu, Zhu Xinrong, Liu Dadong, et al. Architectural physics[M]. Beijing: China Building Materials Industry Press, 2014
|
[15] |
杨春宇, 唐鸣放, 谢辉. 建筑物理(图解版)[M]. 2版. 北京: 中国建材工业出版社, 2021
Yang Chunyu, Tang Mingfang, Xie Hui, et al. Building physics (graphic edition)[M]. 2nd ed. Beijing: China Building Materials Industry Press, 2021
|
[16] |
王成平, 王远东. 建筑材料与检测[M]. 北京: 北京理工大学出版社, 2021
Wang Chengping, Wang Yuandong. Building materials and testing[M]. Beijing: Beijing Institute of Technology Press, 2021
|
[17] |
郭山红, 孙锦涛, 谢仁宏, 等. 电磁波穿透墙体的衰减特性[J]. 强激光与粒子束, 2009, 21(1):113-117
Guo Shanhong, Sun Jintao, Xie Renhong, et al. Attenuation characteristics of electromagnetic wave penetrating walls[J]. High Power Laser and Particle Beams, 2009, 21(1): 113-117
|
[18] |
赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079
Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
|
[19] |
胡明浪, 周世华, 闫丽萍, 等. 基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证[J]. 强激光与粒子束, 2022, 34:053002 doi: 10.11884/HPLPB202234.220026
Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002 doi: 10.11884/HPLPB202234.220026
|
[20] |
Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 2005, 25(7/8): 603-622.
|
[1] | Qiang Xiwen, Wu Min, Zong Fei, Zhai Shengwei, Hu Yuehong, Feng Shuanglian, Zhao Junwei, Chang Jinyong. High-precision measurement technique of isoplanatic angle[J]. High Power Laser and Particle Beams, 2021, 33(8): 081008. doi: 10.11884/HPLPB202133.210215 |
[2] | Hu Xiaodan, Su Changdong, Luo Tao, Qing Chun, Sun Gang, Liu Qing, Li Xuebin, Zhu Wenyue, Wu Xiaoqing. Estimating the profiles of atmospheric turbulence above Korla, Maoming, Lhasa by Thorpe scale[J]. High Power Laser and Particle Beams, 2019, 31(8): 081002. doi: 10.11884/HPLPB201931.190074 |
[3] | Xu Chunyan, Zhan Guowei, Qing Chun, Cai Jun, Wu Xiaoqing. Estimation and measurement of optical turbulence over land and offshore[J]. High Power Laser and Particle Beams, 2018, 30(2): 021003. doi: 10.11884/HPLPB201830.170296 |
[4] | Zhang Peng, Qin Kaiyu, Jiang Dagang, Deng Ke, Yao Zhoushi. Analysis of heterodyne efficiency of near earth coherent laser communication links[J]. High Power Laser and Particle Beams, 2015, 27(04): 041006. doi: 10.11884/HPLPB201527.041006 |
[5] | Wang Qian, Mei Haiping, Xiao Shumei, Huang Honghua, Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Fractal and intermittency analysis of atmospheric optical turbulence near ground[J]. High Power Laser and Particle Beams, 2014, 26(02): 021010. doi: 10.3788/HPLPB201426.021010 |
[6] | Huang Dequan, Zhou Wenchao, Qiu Hong, Zhang Jianzhu, Yun Yu, Tian Xiaoqiang. Research on measurement of atmospheric coherence length using Shack-Hartmann wavefront sensor[J]. High Power Laser and Particle Beams, 2014, 26(08): 081003. doi: 10.11884/HPLPB201426.081003 |
[7] | Wu Fengtie, Chen Jing, Cheng Zhiming. Influence of base angle and focal length of vaulted axicons on bottle beams[J]. High Power Laser and Particle Beams, 2013, 25(03): 569-573. doi: 10.3788/HPLPB20132503.0569 |
[8] | Liu Jun, Wang Shaopeng, Gao Ming. Scintillation of polarized and partially coherent laser beam scattered by diffuse target and propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2013, 25(01): 31-36. doi: 10.3788/HPLPB20132501.0031 |
[9] | li Fei, Wu Yi, Hou Zaihong. Data processing of scintillation index measurement in real atmosphere[J]. High Power Laser and Particle Beams, 2012, 24(06): 1349-1352. doi: 10.3788/HPLPB20122406.1349 |
[10] | li peng, zheng yi, han chao, fan jiangbing, song lijun, geng na, xiang zhen, zhang yijun. Observation of lightning optical signals with photodiode detector[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[11] | ma haotong, zhou pu, wang xiaolin, ma yanxing, wang xiaobo, xu xiaojun, liu zejin. Generation of dark hollow beam with phase-only liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- . |
[12] | rao lianzhou, zheng xiaoxia, xiao boqi. Radiation forces of focused partially coherent vortex beams on a dielectric sphere[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- . |
[13] | qiao chun-hong, fan cheng-yu, wang ying-jian, feng xiao-xing, cheng dong-jie. Simulation experiment of high energy laser propagation in the atmosphere[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- . |
[14] | liu hou-tong, li chao, wang zhen-zhu, huang wei, zhou jun. Analysis on eye safety of airborne atmosphere detection lidar and eye safety[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- . |
[15] | shao shi-yong, hao lei, huang yin-bo, rao rui-zhong. Light scattering by prolate ice cylinder[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- . |
[16] | liang li-zhen, hu chun-dong, liu zhi-min, hu li-qun. Effect of neutral beam quality on design of window in bending system[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- . |
[17] | huang yin-bo, wang ying-jian. Effect of the measurement errors of atmospheric parameters on the laser propagation effects[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- . |
[18] | gao chong, ma jing, tan li-ying. Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- . |
[19] | liu jian-bin, wu jian. Light scattering model and angular spectrum of scattering intensity in fogs[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- . |
[20] | wu xiao qing, wang ying jian, rao rui zhong, zeng zong yong, gong zhi ben. Experiment verification of numerical model of atmospheric optical refractive index structure parameter [J]. High Power Laser and Particle Beams, 2003, 15(02): 0- . |