Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Tan Bozhong, Li Yinghua, Zhang Lin, et al. Study on M-band radiation spectrum of laser driven multilayer composite target[J]. High Power Laser and Particle Beams, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018
Citation: Tan Bozhong, Li Yinghua, Zhang Lin, et al. Study on M-band radiation spectrum of laser driven multilayer composite target[J]. High Power Laser and Particle Beams, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018

Study on M-band radiation spectrum of laser driven multilayer composite target

doi: 10.11884/HPLPB202335.230018
  • Received Date: 2023-02-03
  • Accepted Date: 2023-05-05
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-06-13
  • Publish Date: 2023-08-15
  • Time-resolved X-ray absorption fine structure spectrum technology needs to produce X-ray source with high brightness, uniform and wide spectrum. The M-band radiation source generated by an elementary target has high brightness, but poor uniformity. Therefore, this paper proposes a scheme to generate M-band radiation using a multilayer composite target prepared by a variety of metallic materials. For the K edge X-ray absorption spectroscopy experiment of Si, the optimal material ratio was theoretically calculated according to the previous elementary target M-band spectrum experiment data, and the multilayer composite target composed of Au, Yb, Dy was prepared. The radiation spectrum measurement of the multilayer composite target driven by pulse laser was carried out on the Shenguang II laser facility, and the experimental results were basically consistent with the theoretical calculation. Compared with an elementary target, the M-band radiation source generated by multilayer composite target has the advantages of wide spectrum and uniform overall brightness, and has great application potential in time-resolved X-ray absorption fine structure spectroscopy experiments.
  • loading
  • [1]
    Bressler C, Chergui M. Ultrafast X-ray absorption spectroscopy[J]. Chemical Reviews, 2004, 104(4): 1781-812. doi: 10.1021/cr0206667
    [2]
    Pertot Y, Schmidt C, Matthews M, et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355(6322): 264. doi: 10.1126/science.aah6114
    [3]
    Forget P, Dorchies F, Kieffer J C, et al. Ultrafast broadband laser plasma X-ray source for femtosecond time-resolved EXAFS[J]. Chemical Physics, 2004, 299(2-3): 259-263. doi: 10.1016/j.chemphys.2003.10.037
    [4]
    Durr H A, Stamm C, Kachel T, et al. Ultrafast electron and spin dynamics in nickel probed with femtosecond X-ray pulses[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1957-1961. doi: 10.1109/TMAG.2008.924544
    [5]
    Pascarelli S, Mathon O, Mairs T, et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the european synchrotron radiation facility: the energy-dispersive x-ray absorption spectroscopy beamline ID24[J]. Journal of Synchrotron Radiation, 2016, 23(1): 353-368. doi: 10.1107/S160057751501783X
    [6]
    Pépin C. M, Torchio R, Occelli F, et al. White-line evolution in shocked solid Ta evidenced by synchrotron X-ray absorption spectroscopy[J]. Physical Review B, 2020, 102(14): 144102. doi: 10.1103/PhysRevB.102.144102
    [7]
    Torchio R, Occelli F, Mathon O, et al. Probing local and electronic structure in warm dense matter: single pulse synchrotron X-ray absorption spectroscopy on shocked Fe[J]. Scientific Reports, 2016, 6: 26402. doi: 10.1038/srep26402
    [8]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11(5): 2688-2695. doi: 10.1063/1.1646673
    [9]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12(9): 1052.
    [10]
    Coppari F, Thorn D. B, Kemp G. E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility.[J]. Review of Scientific Instruments, 2017, 88(8): 083907. doi: 10.1063/1.4999649
    [11]
    Bolis R, Hernandez J-A, Recoules V, et al. X-ray absorption near edge spectroscopy study of warm dense MgO[J]. 2019, 26(11): 112703.
    [12]
    Benuzzi-Mounaix A, Dorchies F, Recoules V, et al. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy[J]. Physical Review Letters, 2011, 107(16): 165006. doi: 10.1103/PhysRevLett.107.165006
    [13]
    Dorchies F, Lévy A, Goyon C, et al. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray absorption near-edge spectroscopy[J]. Physical Review Letters, 2011, 107(24): 245006. doi: 10.1103/PhysRevLett.107.245006
    [14]
    Dorchies F, Fedorov N, Lecherbourg L. Experimental station for laser-based picosecond time-resolved X-ray absorption near-edge spectroscopy.[J]. Review of Scientific Instruments, 2015, 86(7): 073106. doi: 10.1063/1.4926348
    [15]
    Zhao Y, Yang J, Zhang J, et al. K-shell photoabsorption edge of strongly coupled matter driven by laser-converted radiation.[J]. Physical Review Letters, 2013, 111(15): 155003. doi: 10.1103/PhysRevLett.111.155003
    [16]
    谭伯仲, 阳庆国, 刘冬兵, 等. 基于M壳层辐射的Si K边X射线吸收近边结构谱实验研究.[J]. 光学学报, 2018, 38(3):0330001 doi: 10.3788/AOS201838.0330001

    Tan B Z, Yang Q G, Liu D B, et al. Experimental study on Si K-edge X-ray absorption near-edge structure with M-shell radiation[J]. Acta Optica Sinica, 2018, 38(3): 0330001 doi: 10.3788/AOS201838.0330001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (347) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return