Volume 35 Issue 7
Jun.  2023
Turn off MathJax
Article Contents
Yang Tianli, Yang Jing, Zhou Wangzhe, et al. 100 kHz high power high beam quality nanosecond laser oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023
Citation: Yang Tianli, Yang Jing, Zhou Wangzhe, et al. 100 kHz high power high beam quality nanosecond laser oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023

100 kHz high power high beam quality nanosecond laser oscillator

doi: 10.11884/HPLPB202335.230023
  • Received Date: 2023-02-13
  • Accepted Date: 2023-04-27
  • Rev Recd Date: 2023-05-09
  • Available Online: 2023-05-16
  • Publish Date: 2023-06-15
  • Nanosecond (ns) pulsed laser with high average power and high repetition rate is a potential solution for laser cutting, laser welding and many other processing applications. With the increase of pulse repetition rate, especially when it is higher than 50 kHz, it is difficult to accumulate enough upper state population in a limited time, and the stability of laser pulse becomes a challenge in the design of laser. The main oscillator power amplifier (MOPA) system is the main method currently used. It is difficult to obtain ns pulsed laser with high average power, high repetition rate and high beam quality through direct oscillation. In this paper, the quantitative relationship between the intensity stability of laser pulse and the pump rate is analyzed according to the simulation of high repetition rate Q-switched laser. Combined with the use of plane-concave lenses to make the cavity a thermal-near-unstable cavity with a large-volume fundamental mode, the balanced design of Nd:YAG acousto-optic (AO) Q-switched laser oscillator with high repetition rate, high power and high beam quality was realized. A direct oscillation of 100 kHz high power high beam quality ns pulsed laser by using side pumped module was realized for the first time, the discrete coefficient of pulse intensity was only 0.041, the output power exceeded 142 W, the pulse width was 165 ns, and the beam quality factor M2 was 1.5.
  • loading
  • [1]
    Koechner W. Solid-state laser engineering[M]. New York: Springer, 2006: 35-37, 54-61, 119-125, 188-190, 442-445, 488-493, 515-522.
    [2]
    李雪鹏, 杨晶, 筵兴伟, 等. 百瓦级近衍射极限VCSEL泵浦激光器[J]. 强激光与粒子束, 2022, 34:081004 doi: 10.11884/HPLPB202234.220078

    Li Xuepeng, Yang Jing, Yan Xingwei, et al. Hundred-watt level VCSEL-pumped laser with near diffraction limit beam quality[J]. High Power Laser and Particle Beams, 2022, 34: 081004 doi: 10.11884/HPLPB202234.220078
    [3]
    Kalichevsky-Dong M T, Ge Wenping, Hawkins T W, et al. 4.8 mJ pulse energy directly from single-mode Q-switched ytterbium fiber lasers[J]. Optics Express, 2021, 29: 30384. doi: 10.1364/OE.438634
    [4]
    Zhang Shubao, Guo Lin, Li Menglong, et al. High-power near diffraction-limited 1064-nm Nd: YAG rod laser and second harmonic generation by intracavity-frequency-doubling[J]. Chinese Optics Letters, 2012, 10(7): 45-48.
    [5]
    Honea E C, Beach R J, Mitchell S C, et al. Dual-rod Yb: YAG laser for high-power and high-brightness applications[C]//Advanced Solid State Lasers 2000. Davos, Switzerland: Optica Publishing Group, 2000: MA6.
    [6]
    Stolzenburg C, Giesen A, Butze F, et al. Cavity-dumped intracavity-frequency-doubled Yb: YAG thin disk laser at 100 kHz repetition rate[C]//Advanced Solid-State Photonics 2007. Vancouver, Canada: Optica Publishing Group, 2007: TuC4.
    [7]
    Fu Xing, Liu Q, Yan Xianghe, et al. 120 W high repetition rate Nd: YVO4 MOPA laser with a Nd: YAG cavity-dumped seed laser[J]. Applied Physics B, 2009, 95(1): 63-67. doi: 10.1007/s00340-009-3387-1
    [8]
    余锦, 张雪, 刘洋, 等. LD泵浦高功率高斜效率Nd: YVO4声光调Q激光器[J]. 强激光与粒子束, 2011, 23(2):285-289 doi: 10.3788/HPLPB20112302.0285

    Yu Jin, Zhang Xue, Liu Yang, et al. Laser diode end-pumped accousto-optical Q-switched Nd: YVO4 laser with high power and high slope efficiency[J]. High Power Laser and Particle Beams, 2011, 23(2): 285-289 doi: 10.3788/HPLPB20112302.0285
    [9]
    Wang Zijian, Jin Guangyong, Yu Yongji, et al. High repetition-rate and short pulse-width 1064nm laser in a composite crystal device[C]//Proceedings of SPIE 9295, International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing and Micro/Nano Technologies. 2014: 92950L.
    [10]
    Zhang Wenqi, Shen Yijie, Meng Yuan, et al. Quasi-single-crystal-fiber acousto-optic Q-switched tandem dual Nd: YVO4 thin rods laser[J]. Applied Optics, 2017, 56(27): 7512-7517. doi: 10.1364/AO.56.007512
    [11]
    Li Xudong, Yu Xin, Chen Fei, et al. Power scaling of directly dual-end-pumped Nd: GdVO4 laser using grown-together composite crystal[J]. Optics Express, 2010, 18(7): 7407-7014. doi: 10.1364/OE.18.007407
    [12]
    Yu Xinghuo, Wang Cheng, Ma Yufei, et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO4 laser[J]. Applied Physics B, 2012, 106(2): 309-313. doi: 10.1007/s00340-011-4786-7
    [13]
    石朝辉, 张晶, 牛岗, 等. 高重频双端泵浦全固态Nd: YVO4声光调Q激光器[J]. 激光与红外, 2006, 36(8):635-638 doi: 10.3969/j.issn.1001-5078.2006.08.005

    Shi Zhaohui, Zhang Jing, Niu Gang, et al. High repetition rate AO Q-switching of double end pumped Nd: YVO4 all-solid-state laser[J]. Laser & Infrared, 2006, 36(8): 635-638 doi: 10.3969/j.issn.1001-5078.2006.08.005
    [14]
    Omatsu T, Isogami T, Minassian A, et al. >100kHz Q-switched operation in transversely diode-pumped ceramic Nd 3+: YAG laser in bounce geometry[J]. Optics Communications, 2005, 249(4/6): 531-537.
    [15]
    Liu Ke, Li Fangqin, Xu H Y, et al. High-power high-efficiency acousto-optically Q-switched rod Nd: YAG laser with 885nm diode laser pumping[J]. Optics Communications, 2013, 286: 291-294. doi: 10.1016/j.optcom.2012.09.008
    [16]
    耿爱丛, 赵慈, 薄勇, 等. 一种测量二极管侧面抽运固体激光器热焦距的方法[J]. 物理学报, 2008, 57(11):6987-6991 doi: 10.3321/j.issn:1000-3290.2008.11.045

    Geng Aicong, Zhao Ci, Bo Yong, et al. A method for measuring thermal focal length of LD-side-pumped laser crystal[J]. Acta Physica Sinica, 2008, 57(11): 6987-6991 doi: 10.3321/j.issn:1000-3290.2008.11.045
    [17]
    郭亚丁. 高功率全固态激光器技术研究[D]. 北京: 中国科学院大学, 2020: 44-48

    Guo Yading. Research on high-power solid state laser[D]. Beijing: University of Chinese Academy of Sciences, 2020: 44-48
    [18]
    Feng Yan, Bi Yong, Xu Zuyan, et al. Thermally near-unstable cavity design for solid state lasers[C]//Proceedings of SPIE 4969, Laser Resonators and Beam Control VI. 2003: 227-232.
    [19]
    吕百达. 激光光学: 光束描述、传输变换与光腔技术物理[M]. 3版. 北京: 高等教育出版社, 2003: 361

    Lv Baida. Laser optics: beam characterization, propagation and transformation, resonator technology and physics[M]. 3rd ed. Beijing: Higher Education Press, 2003: 361
    [20]
    Yang Tianli, Yang Jing, Zhou Wangzhe, et al. Kilowatt-level 100 kHz nanosecond pulsed laser amplifier via a 205-watt seeding[C]//Proceedings of SPIE 12459, Sixth International Symposium on Laser Interaction with Matter. 2022: 1245915.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (498) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return