Citation: | Yi Dong, Ma Ruipeng, Hu Tao, et al. Intelligent detection algorithm of broadband communication signal based on spectral decomposition[J]. High Power Laser and Particle Beams, 2023, 35: 069001. doi: 10.11884/HPLPB202335.230024 |
[1] |
Green D M, Swets J A. Signal detection theory and psychophysics[M]. New York: Wiley, 1966.
|
[2] |
Abdzadeh-Ziabari H, Champagne B. Signal detection algorithms for single carrier generalized spatial modulation in doubly selective channels[J]. Signal Processing, 2020, 172: 107539. doi: 10.1016/j.sigpro.2020.107539
|
[3] |
胡涛. 宽带侦察接收机前端研制[D]. 成都: 电子科技大学, 2018
Hu Tao. Development of wideband reconnaissance receiver front end[D]. Chengdu: University of Electronic Science and Technology of China, 2018
|
[4] |
Joykutty A M, Baranidharan B. Cognitive Radio Networks: Recent advances in spectrum sensing techniques and security[C]//2020 International Conference on Smart Electronics and Communication (ICOSEC). 2020.
|
[5] |
Cheng Qian, Gong Kexian, Zhang Min, et al. An efficient wide-band signal detection and extraction method[J]. MATEC Web of Conferences, 2021, 336: 04011. doi: 10.1051/matecconf/202133604011
|
[6] |
魏东兴, 殷福亮. 采用离散小波变换的认知无线电频谱能量检测[J]. 信号处理, 2014, 30(3):306-313 doi: 10.3969/j.issn.1003-0530.2014.03.008
Wei Dongxing, Yin Fuliang. Spectrum energy detection using discrete wavelet transform for cognitive radios[J]. Journal of Signal Processing, 2014, 30(3): 306-313 doi: 10.3969/j.issn.1003-0530.2014.03.008
|
[7] |
李敏乐, 毕大平, 韩佳辉. 基于形态学运算的子带频谱检测算法[J]. 探测与控制学报, 2017, 39(4):49-53,60
Li Minle, Bi Daping, Han Jiahui. Sub-band spectrum detection algorithm based on morphological operation in complicated noise environment[J]. Journal of Detection & Control, 2017, 39(4): 49-53,60
|
[8] |
蒋天立, 彭华, 巩克现. 多尺度形态学滤波下的宽带信号检测方法[J]. 信号处理, 2014, 30(9):1055-1063 doi: 10.3969/j.issn.1003-0530.2014.09.009
Jiang Tianli, Peng Hua, Gong Kexian. Signal detection in wideband reconnaissance using multi-scale morphological filter[J]. Journal of Signal Processing, 2014, 30(9): 1055-1063 doi: 10.3969/j.issn.1003-0530.2014.09.009
|
[9] |
Du Xuedan, Cai Yinghao, Wang Shuo, et al. Overview of deep learning[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). 2016.
|
[10] |
Mathew A, Amudha P, Sivakumari S. Deep learning techniques: an overview[C]//International Conference on Advanced Machine Learning Technologies and Applications. Singapore: Springer, 2020.
|
[11] |
Dörner S, Cammerer S, Hoydis J, et al. Deep learning based communication over the air[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 132-143. doi: 10.1109/JSTSP.2017.2784180
|
[12] |
O’Shea T J, Roy T, Clancy T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179. doi: 10.1109/JSTSP.2018.2797022
|
[13] |
O'Shea T, Roy T, Clancy T C. Learning robust general radio signal detection using computer vision methods[C]//2017 51st Asilomar Conference on Signals, Systems, and Computers. 2017: 829-832.
|
[14] |
Zha Xiong, Peng Hua, Qin Xin, et al. A deep learning framework for signal detection and modulation classification[J]. Sensors, 2019, 19(18): 4042. doi: 10.3390/s19184042
|
[15] |
查雄. 基于神经网络的数字调制信号检测, 识别与解调算法[D]. 郑州: 战略支援部队信息工程大学, 2020
Zha Xiong. Research on digital modulation signal detection, recognition and demodulation based on neural network [D]. Zhengzhou: Information Engineering University, 2020
|
[16] |
Li Rundong, Hu Jianhao, Li Shaoqian, et al. Blind detection of communication signals based on improved YOLO3[C]//2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). 2021: 424-429.
|
[17] |
Ge Zheng, Liu Songtao, Wang Feng, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint arXiv: 2107.08430, 2021.
|
[18] |
Shepley A, Falzon G, Kwan P. Confluence: A robust non-IoU alternative to non-maxima suppression in object detection[DB/OL]. arXiv preprint arXiv: 2012.00257, 2020.
|
[19] |
Yu Jiahui, Jiang Yuning, Wang Zhangyang, et al. UnitBox: An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. 2016.
|
[20] |
Zheng Zhaohui, Wang Ping, Liu Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020.
|