Wang Yu, Li Hongtao, Wang Wendou, et al. Simulation study on performances of rod-pinch diode on 1.2 MV X-ray generator Scorpio[J]. High Power Laser and Particle Beams, 2015, 27: 095005. doi: 10.11884/HPLPB201527.095005
Citation: Hu Zhengzheng, Ma Liuyang, Hu Hao. A fault diagnosis method for optical elements based on infrared and visible light videos[J]. High Power Laser and Particle Beams, 2023, 35: 089002. doi: 10.11884/HPLPB202335.230040

A fault diagnosis method for optical elements based on infrared and visible light videos

doi: 10.11884/HPLPB202335.230040
  • Received Date: 2023-02-28
  • Accepted Date: 2023-04-14
  • Rev Recd Date: 2023-05-09
  • Available Online: 2023-05-20
  • Publish Date: 2023-08-15
  • Optical elements are the core components of laser systems, and their health status is the key to the stable operation of laser systems. How to realize real-time monitoring and fault diagnosis of optical elements in the working status of laser systems is a problem that urgently needs to be solved in this professional field. To solve this problem, this paper proposes a fault diagnosis method for optical elements based on infrared and visible light videos. Firstly, a long-wave infrared camera and a visible light camera are used to collect video information during the working process of the optical element. Then, the collected video information is processed using anomaly point detection algorithms. Finally, the fault diagnosis and localization of the optical element are carried out in combination with the thermal rise characteristics of the optical element. The experimental results show that, under the same algorithm, the method proposed in this paper has improved the fault diagnosis precision rate, false alarm rate and missed alarm rate by 9.70%, 3.60% and 6.10%, respectively, compared with the method of fault diagnosis using infrared videos alone; the method proposed in this paper has improved the fault diagnosis precision rate, false alarm rate and missed alarm rate by 18.00%, 16.00% and 2.00%, respectively, compared with the method of fault diagnosis using visible light videos alone.
  • [1]
    Conder A, Alger T, Azevedo S, et al. Final optics damage inspection (FODI) for the National Ignition Facility[C]//Proceedings of SPIE 6720. 2008: 672010.
    [2]
    Deng Hongxiang, Guo Wenli, Gao Huanhuan, et al. A numerical approach for femtosecond laser-induced photoionization in solids and its application[J]. Journal of Optics, 2019, 21: 075501. doi: 10.1088/2040-8986/ab2357
    [3]
    Jing Xufeng, Tian Ying, Zhang Junchao, et al. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics[J]. Applied Surface Science, 2012, 258(10): 4741-4749. doi: 10.1016/j.apsusc.2012.01.070
    [4]
    邓燕, 许乔, 柴立群, 等. 光学元件亚表面缺陷的全内反射显微检测[J]. 强激光与粒子束, 2009, 21(6):835-840

    Deng Yan, Xu Qiao, Chai Liqun, et al. Total internal reflection microscopy: a subsurface defects identification technique in optically transparent components[J]. High Power Laser and Particle Beams, 2009, 21(6): 835-840
    [5]
    赵文川, 钟显云, 刘彬. 基于条纹反射的光学表面疵病检测法[J]. 光子学报, 2014, 43:0912007 doi: 10.3788/gzxb20144309.0912007

    Zhao Wenchuan, Zhong Xianyun, Liu Bin. The surface flaws inspection of optical components based on the fringe reflection[J]. Acta Photonica Sinica, 2014, 43: 0912007 doi: 10.3788/gzxb20144309.0912007
    [6]
    任冰强, 黄惠杰, 张维新, 等. 光学元件损伤在线检测装置及实验研究[J]. 强激光与粒子束, 2004, 16(4):465-468

    Ren Bingqiang, Huang Huijie, Zhang Weixin, et al. Online inspection apparatus and experiments on optics damage[J]. High Power Laser and Particle Beams, 2004, 16(4): 465-468
    [7]
    解亚平. 高功率固体激光光学元件损伤在线检测装置的研究[D]. 武汉: 华中科技大学, 2006: 35-40

    Xie Yaping. Research of online inspection equipment for optic damage of high power solid laser[D]. Wuhan: Huazhong University of Science and Technology, 2006: 35-40
    [8]
    范哲源, 曹剑中, 屈恩世, 等. 一种8倍可见光变焦光学系统设计[J]. 光子学报, 2010, 39(s1):101-104 doi: 10.3788/gzxb201039s1.0101

    Fan Zheyuan, Cao Jianzhong, Qu Enshi, et al. Design of an 8 times ratio visible zoom optical system[J]. Acta Photonica Sinica, 2010, 39(s1): 101-104 doi: 10.3788/gzxb201039s1.0101
    [9]
    彭志涛. 强激光复杂光机组件光学元件激光损伤在线检测技术研究[D]. 绵阳: 中国工程物理研究院, 2011: 41-48

    Peng Zhitao. On-line laser damage detection technology for optical components of high-power complex optical-mechanical components[D]. Mianyang: China Academy of Engineering Physics, 2011: 41-48
    [10]
    张文学, 王继红, 任戈. 基于相机阵列的光学组件缺陷在线检测方法[J]. 强激光与粒子束, 2020, 32:051001 doi: 10.11884/HPLPB202032.190444

    Zhang Wenxue, Wang Jihong, Ren Ge. Optical elements defect online detection method based on camera array[J]. High Power Laser and Particle Beams, 2020, 32: 051001 doi: 10.11884/HPLPB202032.190444
    [11]
    黄柏, 杨帆, 邓剑平, 等. 基于累积帧间差分法和掩膜的SF6红外检漏视频定位算法研究[J]. 电气技术, 2022, 23(7):104-108

    Huang Bo, Yang Fan, Deng Jianping, et al. Study of an accumulated interframe difference and mask based SF6 leakage infrared video location method[J]. Electrical Engineering, 2022, 23(7): 104-108
    [12]
    赵高鹏, 薄煜明, 尹明锋. 一种红外和可见光双通道视频目标跟踪方法[J]. 电子与信息学报, 2012, 34(3):529-534

    Zhao Gaopeng, Bo Yuming, Yin Mingfeng. An object tracking method based on infrared and visible dual-channel video[J]. Journal of Electronics & Information Technology, 2012, 34(3): 529-534
    [13]
    尹丽华, 杭娟, 康亮, 等. 基于联合相机路径的红外视频稳像算法[J]. 红外与激光工程, 2021, 50:20200405 doi: 10.3788/IRLA20200405

    Yin Lihua, Hang Juan, Kang Liang, et al. Infrared video image stabilization algorithm based on joint camera path[J]. Infrared and Laser Engineering, 2021, 50: 20200405 doi: 10.3788/IRLA20200405
    [14]
    李向燕, 王肖霞, 杨风暴. 一种基于差异特征驱动的红外与可见光视频拟态融合方法[J]. 电子测量技术, 2021, 44(22):114-120

    Li Xiangyan, Wang Xiaoxia, Yang Fengbao. Fusion method of infrared and visible video mimicry based on difference feature driving[J]. Electronic Measurement Technology, 2021, 44(22): 114-120
    [15]
    赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
  • Relative Articles

    [1]Liu Xin, Yuan Yonggang, Wu Jian, He Jingtao, Feng Peng, Qu Jinhui, Liu Yixin, Qian Yikun, Zhang Song, Zhao Xiansheng. Research on location method of radiation action based on Si-PM array[J]. High Power Laser and Particle Beams, 2022, 34(6): 066001. doi: 10.11884/HPLPB202234.210363
    [2]Yang Hanwu, Xun Tao, Gao Jingming, Zhang Zicheng. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34(9): 095002. doi: 10.11884/HPLPB202234.210472
    [3]Cao Lei, Zhang Yaofeng, Yang Yang, Huang Jianwei, Zhang Xiaole. Measurement of environmental level X, γ dose with conversion of complete spectra without deconvolution method of MC simulation[J]. High Power Laser and Particle Beams, 2022, 34(2): 026005. doi: 10.11884/HPLPB202234.210300
    [4]Ma Yuhua, Li Hang, Yang Xin, Li Rundong, Huang Hongwen. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34(5): 056004. doi: 10.11884/HPLPB202234.210551
    [5]Jia Qinggang, Yang Bo, Xu Haibo, She Ruogu. Study on imaging simulation of electronic photography[J]. High Power Laser and Particle Beams, 2021, 33(5): 054002. doi: 10.11884/HPLPB202133.200300
    [6]Wang Zhongma, Huang Liansheng, Fu Peng, Huang Ronglin, Chen Xiaojiao, Wang Zhenshang, Zeng Sizhe. Calculation of pulse current of high power converter[J]. High Power Laser and Particle Beams, 2019, 31(3): 036003. doi: 10.11884/HPLPB201931.180283
    [7]Geng Lidong, He Yang, Yuan Jianqiang, Wang Minhua, Cao Longbo, Xie Weiping. Physical characteristics of rod-pinch diode with different concentricity[J]. High Power Laser and Particle Beams, 2018, 30(11): 115003. doi: 10.11884/HPLPB201830.180181
    [8]Dong Ye, Liu Qingxiang, Li Xiangqiang, Zhou Haijing, Dong Zhiwei. Monte Carlo simulation of a novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30(6): 063005. doi: 10.11884/HPLPB201830.170431
    [9]Qu Junfu, Ma Xun, Zhao Juan, Li Hongtao. Simulation of rod-pinch diode at hundreds of thousands of volts[J]. High Power Laser and Particle Beams, 2018, 30(5): 055003. doi: 10.11884/HPLPB201830.170432
    [10]Guo Fan, Jiang Jihao, Gong Boyi, Chen Lin, Zou Wenkang, Wang Meng, Xie Weiping. Calculation of impedance of azimuthal transmission line in induction voltage adder accelerator[J]. High Power Laser and Particle Beams, 2016, 28(02): 025001. doi: 10.11884/HPLPB201628.025001
    [11]Liu Yudong, Huang Liangsheng, Wang Sheng, Wang Na, Li Yong. Impedances and beam instability in RCS/CSNS[J]. High Power Laser and Particle Beams, 2013, 25(02): 465-470. doi: 10.3788/HPLPB20132502.0465
    [12]Dong Ye, Dong Zhiwei, Yang Wenyuan, Zhou Qianhong, Zhou Haijing. Monte Carlo simulation of multipactor discharge suppressing on grooved dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(02): 399-406. doi: 10.3788/HPLPB20132502.0399
    [13]Zhang Pengfei, Sun Fengju, Yang Hailiang, Sun Jianfeng, Sun Jiang, Li Jingya. Electron beam pinch simulative study of rod-pinch diode driven by 40-stage FLTD module[J]. High Power Laser and Particle Beams, 2013, 25(11): 3065-3068. doi: 10.3788/HPLPB20132511.3065
    [14]Song Guzhou, Wang Kuilu, Ma Jiming, Zhou Ming. Analysis on coupling between scintillator and lens in radiographic imaging system[J]. High Power Laser and Particle Beams, 2012, 24(02): 471-475. doi: 10.3788/HPLPB20122402.0475
    [15]song guzhou, zhu hongquan, han changcai, ma jiming, zhang zhanhong, li hongyun, yang hailiang. Imaging measurement of X-ray spot of rod-pinch diode radiographic source[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [16]song shengyi, xie weiping, wang wendou. Analysis of power flow for plate-to-cone transition in vacuum transmission line[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [17]cao yi-bing, he jun-tao, zhang jian-de. Novel low-impedance transit-time radiation oscillator[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [18]chen lin, xie wei-ping, deng jian-jun. Development of rod-pinch diode for flash X-ray radiography[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
    [20]liu jinliang, tan qimei, li chuanlu. EFFECT OF FARADAY CUP IMPEDANCE ON ELECTRON BEAM CURRENT OF DIODE[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(5)

    1. 屈俊夫,冯元伟,耿力东,李洪涛. 杆箍缩二极管阳极杆粒子生成模型研究. 物理学报. 2022(22): 207-217 .
    2. 耿力东,谢卫平,袁建强,王敏华,曹龙博,付佳斌,赵小明,何泱. 阳极杆箍缩二极管的理论模型及物理特性. 强激光与粒子束. 2018(08): 116-122 . 本站查看
    3. 耿力东,谢卫平,袁建强,王敏华,曹龙博,张思群,赵小明,何泱. 1MV杆箍缩二极管辐射特性实验研究. 原子能科学技术. 2018(08): 1512-1518 .
    4. 耿力东,何泱,袁建强,王敏华,曹龙博,谢卫平. 同心度对杆箍缩二极管物理特性的影响. 强激光与粒子束. 2018(11): 140-145 . 本站查看
    5. 马勋,袁建强,刘宏伟,王凌云,姜苹. 工业X光二极管重复频率实验研究. 强激光与粒子束. 2016(02): 175-179 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.2 %FULLTEXT: 26.2 %META: 72.2 %META: 72.2 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %上海: 0.7 %上海: 0.7 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %内江: 0.1 %内江: 0.1 %北京: 13.5 %北京: 13.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %台北: 0.5 %台北: 0.5 %台州: 0.6 %台州: 0.6 %咸阳: 0.2 %咸阳: 0.2 %哈尔科夫: 1.1 %哈尔科夫: 1.1 %哥伦布: 0.2 %哥伦布: 0.2 %天津: 0.3 %天津: 0.3 %宣城: 0.5 %宣城: 0.5 %常州: 0.2 %常州: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %扬州: 0.3 %扬州: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.6 %深圳: 0.6 %湖州: 0.5 %湖州: 0.5 %漯河: 0.7 %漯河: 0.7 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 51.1 %西宁: 51.1 %西安: 1.5 %西安: 1.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海东莞中山临汾丹东内江北京十堰南京台北台州咸阳哈尔科夫哥伦布天津宣城常州广州张家口扬州晋城普洱杭州武汉济南淄博深圳湖州漯河福州秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆金华长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (374) PDF downloads(40) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return