Citation: | Hu Zhengzheng, Ma Liuyang, Hu Hao. A fault diagnosis method for optical elements based on infrared and visible light videos[J]. High Power Laser and Particle Beams, 2023, 35: 089002. doi: 10.11884/HPLPB202335.230040 |
[1] |
Conder A, Alger T, Azevedo S, et al. Final optics damage inspection (FODI) for the National Ignition Facility[C]//Proceedings of SPIE 6720. 2008: 672010.
|
[2] |
Deng Hongxiang, Guo Wenli, Gao Huanhuan, et al. A numerical approach for femtosecond laser-induced photoionization in solids and its application[J]. Journal of Optics, 2019, 21: 075501. doi: 10.1088/2040-8986/ab2357
|
[3] |
Jing Xufeng, Tian Ying, Zhang Junchao, et al. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics[J]. Applied Surface Science, 2012, 258(10): 4741-4749. doi: 10.1016/j.apsusc.2012.01.070
|
[4] |
邓燕, 许乔, 柴立群, 等. 光学元件亚表面缺陷的全内反射显微检测[J]. 强激光与粒子束, 2009, 21(6):835-840
Deng Yan, Xu Qiao, Chai Liqun, et al. Total internal reflection microscopy: a subsurface defects identification technique in optically transparent components[J]. High Power Laser and Particle Beams, 2009, 21(6): 835-840
|
[5] |
赵文川, 钟显云, 刘彬. 基于条纹反射的光学表面疵病检测法[J]. 光子学报, 2014, 43:0912007 doi: 10.3788/gzxb20144309.0912007
Zhao Wenchuan, Zhong Xianyun, Liu Bin. The surface flaws inspection of optical components based on the fringe reflection[J]. Acta Photonica Sinica, 2014, 43: 0912007 doi: 10.3788/gzxb20144309.0912007
|
[6] |
任冰强, 黄惠杰, 张维新, 等. 光学元件损伤在线检测装置及实验研究[J]. 强激光与粒子束, 2004, 16(4):465-468
Ren Bingqiang, Huang Huijie, Zhang Weixin, et al. Online inspection apparatus and experiments on optics damage[J]. High Power Laser and Particle Beams, 2004, 16(4): 465-468
|
[7] |
解亚平. 高功率固体激光光学元件损伤在线检测装置的研究[D]. 武汉: 华中科技大学, 2006: 35-40
Xie Yaping. Research of online inspection equipment for optic damage of high power solid laser[D]. Wuhan: Huazhong University of Science and Technology, 2006: 35-40
|
[8] |
范哲源, 曹剑中, 屈恩世, 等. 一种8倍可见光变焦光学系统设计[J]. 光子学报, 2010, 39(s1):101-104 doi: 10.3788/gzxb201039s1.0101
Fan Zheyuan, Cao Jianzhong, Qu Enshi, et al. Design of an 8 times ratio visible zoom optical system[J]. Acta Photonica Sinica, 2010, 39(s1): 101-104 doi: 10.3788/gzxb201039s1.0101
|
[9] |
彭志涛. 强激光复杂光机组件光学元件激光损伤在线检测技术研究[D]. 绵阳: 中国工程物理研究院, 2011: 41-48
Peng Zhitao. On-line laser damage detection technology for optical components of high-power complex optical-mechanical components[D]. Mianyang: China Academy of Engineering Physics, 2011: 41-48
|
[10] |
张文学, 王继红, 任戈. 基于相机阵列的光学组件缺陷在线检测方法[J]. 强激光与粒子束, 2020, 32:051001 doi: 10.11884/HPLPB202032.190444
Zhang Wenxue, Wang Jihong, Ren Ge. Optical elements defect online detection method based on camera array[J]. High Power Laser and Particle Beams, 2020, 32: 051001 doi: 10.11884/HPLPB202032.190444
|
[11] |
黄柏, 杨帆, 邓剑平, 等. 基于累积帧间差分法和掩膜的SF6红外检漏视频定位算法研究[J]. 电气技术, 2022, 23(7):104-108
Huang Bo, Yang Fan, Deng Jianping, et al. Study of an accumulated interframe difference and mask based SF6 leakage infrared video location method[J]. Electrical Engineering, 2022, 23(7): 104-108
|
[12] |
赵高鹏, 薄煜明, 尹明锋. 一种红外和可见光双通道视频目标跟踪方法[J]. 电子与信息学报, 2012, 34(3):529-534
Zhao Gaopeng, Bo Yuming, Yin Mingfeng. An object tracking method based on infrared and visible dual-channel video[J]. Journal of Electronics & Information Technology, 2012, 34(3): 529-534
|
[13] |
尹丽华, 杭娟, 康亮, 等. 基于联合相机路径的红外视频稳像算法[J]. 红外与激光工程, 2021, 50:20200405 doi: 10.3788/IRLA20200405
Yin Lihua, Hang Juan, Kang Liang, et al. Infrared video image stabilization algorithm based on joint camera path[J]. Infrared and Laser Engineering, 2021, 50: 20200405 doi: 10.3788/IRLA20200405
|
[14] |
李向燕, 王肖霞, 杨风暴. 一种基于差异特征驱动的红外与可见光视频拟态融合方法[J]. 电子测量技术, 2021, 44(22):114-120
Li Xiangyan, Wang Xiaoxia, Yang Fengbao. Fusion method of infrared and visible video mimicry based on difference feature driving[J]. Electronic Measurement Technology, 2021, 44(22): 114-120
|
[15] |
赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331
Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
|