Wu Jinghao, Liu Qingxiang, Zhang Zhengquan, et al. Application of dual synchronous coordinate phase-locked loop in AC-link charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 053006. doi: 10.11884/HPLPB201830.170459
Citation: Yin Qianfeng, Zhang Yongqiang, Zhang Li, et al. Analysis of heat transfer and thermal ablation of honeycomb sandwich composite structure under laser irradiation[J]. High Power Laser and Particle Beams, 2023, 35: 081005. doi: 10.11884/HPLPB202335.230044

Analysis of heat transfer and thermal ablation of honeycomb sandwich composite structure under laser irradiation

doi: 10.11884/HPLPB202335.230044
  • Received Date: 2023-03-05
  • Accepted Date: 2023-05-05
  • Rev Recd Date: 2023-05-28
  • Available Online: 2023-06-01
  • Publish Date: 2023-08-15
  • Combined with the heat transfer mechanism of honeycomb structure and the ablation mechanism of composites, the thermal response of honeycomb sandwich composite structure under laser irradiation was studied. For typical honeycomb cells, a theoretical microstructure model of thermal conduction and ablation is established. Based on the finite element software thermal analysis module and secondary development program, a high temperature heat transfer numerical model of honeycomb sandwich structure was constructed, taking into account the nonlinear changes of thermal physical parameters, resin pyrolysis and fiber ablation process. Using continuous laser as the loading heat source, the thermal ablation experiments of honeycomb structure in atmospheric environment were designed and carried out, and the dynamic ablation characteristics of honeycomb structure were obtained. The results show that the honeycomb sandwich composite structure has good ablation resistance when the laser power density is 102 W/cm2; The numerical model can accurately simulate the temperature field and the ablation of resin and fiber in the process of laser loading the honeycomb structure, and can obtain comparatively real ablation morphology.
  • [1]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12 doi: 10.3321/j.issn:1000-3851.2007.01.001

    Du Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 12 doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2]
    Arao Y, Koyanagi J, Utsunomiya S, et al. Analysis of thermal deformation on a honeycomb sandwich CFRP mirror[J]. Mechanics of Advanced Materials and Structures, 2010, 17(5): 328-334. doi: 10.1080/15376494.2010.488533
    [3]
    吴楠, 郝旭峰, 史耀辉, 等. 高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验[J]. 复合材料学报, 2020, 37(7):1619-1628

    Wu Nan, Hao Xufeng, Shi Yaohui, et al. Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1619-1628
    [4]
    Wei Xingyu, Xiong Jian, Wang Jie, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Science China Technological Sciences, 2020, 63(8): 1348-1370. doi: 10.1007/s11431-020-1650-9
    [5]
    解维华, 张博明, 杜善义. 重复使用飞行器金属热防护系统的有限元分析与设计[J]. 航空学报, 2006, 27(4):650-656

    Xie Weihua, Zhang Boming, Du Shanyi. Analysis and design of metallic thermal protection systems for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 650-656
    [6]
    梁伟, 张立春, 吴大方, 等. 金属蜂窝夹芯板瞬态热性能的计算与试验分析[J]. 航空学报, 2009, 30(4):672-677

    Liang Wei, Zhang Lichun, Wu Dafang, et al. Computation and analysis of transient thermal performance of metal honeycomb sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 672-677
    [7]
    邢春鹏. 金属蜂窝夹芯结构性能研究与多层隔热结构优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2008

    Xing Chunpeng. Research on properties of metallic honeycomb structure and optimization of multilayer insulations[D]. Harbin: Harbin Institute of Technology, 2008
    [8]
    景丽, 王广飞, 唐绍锋, 等. 金属蜂窝夹芯板辐射导热耦合问题[J]. 哈尔滨工业大学学报, 2010, 42(5):827-831

    Jing Li, Wang Guangfei, Tang Shaofeng, et al. Radiation and conduction coupling problems of honeycomb sandwich panel[J]. Journal of Harbin Institute of Technology, 2010, 42(5): 827-831
    [9]
    张黎, 张永强, 贺佳, 等. 高速气流作用下能量加载金属蜂窝板数值模拟[J]. 强激光与粒子束, 2017, 29:071005 doi: 10.11884/HPLPB201729.160467

    Zhang Li, Zhang Yongqiang, He Jia, et al. Numerical simulation of metallic honeycomb plates with energy addition in high velocity flow[J]. High Power Laser and Particle Beams, 2017, 29: 071005 doi: 10.11884/HPLPB201729.160467
    [10]
    郑吉良, 孙勇. 单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟[J]. 复合材料学报, 2014, 31(2):505-511

    Zheng Jiliang, Sun Yong. Simulation of thermal performance for single layer and multilayer of the FRP honeycomb panel[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 505-511
    [11]
    邱志平, 林强. 蜂窝夹层复合材料结构非线性传热分析[J]. 复合材料学报, 2005, 22(5):147-154

    Qiu Zhiping, Lin Qiang. Nonlinear heat transfer of honeycomb sandwich composite material structure[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 147-154
    [12]
    Wang Jiangtao, Yuan Wu, Liu Yuwen, et al. High-power laser resistance of filled sandwich panel with truss cores: ablation mechanisms and numerical simulation[J]. Composite Structures, 2018, 203: 574-584. doi: 10.1016/j.compstruct.2018.07.050
    [13]
    彭国良, 杜太焦, 张相华, 等. 蜂窝夹芯复合材料激光烧蚀效应的数值模拟[J]. 现代应用物理, 2014, 5(2):140-145 doi: 10.3969/j.issn.2095-6223.2014.02.010

    Peng Guoliang, Du Taijiao, Zhang Xianghua, et al. Numerical simulation of ablation of honeycomb sandwich composite materials by laser beam[J]. Modern Applied Physics, 2014, 5(2): 140-145 doi: 10.3969/j.issn.2095-6223.2014.02.010
    [14]
    张家雷, 王伟平, 刘仓理. 激光辐照下二维编织碳纤维/环氧树脂复合材料的烧蚀特征[J]. 复合材料学报, 2017, 34(3):494-500

    Zhang Jialei, Wang Weiping, Liu Cangli. Ablation characteristics of 2D braided carbon fiber/epoxy composites under laser irradiation[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 494-500
    [15]
    Chippendale R D, Golosnoy I O, Lewin P L. Numerical modelling of thermal decomposition processes and associated damage in carbon fibre composites[J]. Journal of Physics D: Applied Physics, 2014, 47: 385301. doi: 10.1088/0022-3727/47/38/385301
    [16]
    Meng Songhe, Zhou Yinjia, Xie Weihua, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites[J]. Journal of Spacecraft and Rockets, 2016, 53(5): 930-935. doi: 10.2514/1.A33612
    [17]
    Nan Pengyu, Shen Zhonghua, Han Bing, et al. The influences of laminated structure on the ablation characteristics of carbon fiber composites under CW laser irradiation[J]. Optics & Laser Technology, 2019, 116: 224-231.
    [18]
    赵伟娜. 复杂热-力载荷下CFRP层合板的失效行为及破坏机理研究[D]. 北京: 中国科学院大学, 2018

    Zhao Weina. Failure behavior and failure mechanism of CFRP laminates under complex thermal mechanical loads[D]. Beijing: University of Chinese Academy of Sciences, 2018
  • Relative Articles

    [1]Wang Ruijie, Liu Hongwei, Wang Lingyun, Gao Bin, Zhang Dongdong, Yuan Jianqiang. Development of nanosecond pulsed power supply for large-area dielectric barrier discharges[J]. High Power Laser and Particle Beams, 2025, 37(4): 045006. doi: 10.11884/HPLPB202537.240434
    [2]Ding Baiwen, Hao Jianhong, Zhang Fang, Zhao Qiang, Fan Jieqing, Dong Zhiwei. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams, 2024, 36(12): 124003. doi: 10.11884/HPLPB202436.240175
    [3]Zhong Tiancheng, Chen Lin, Guo Fan, Zou Wenkang, Wang Meng, Xie Weiping. Initial design of a low-impendence large-area-bremsstrahlung diode coupled with coaxial MITL[J]. High Power Laser and Particle Beams, 2017, 29(06): 065002. doi: 10.11884/HPLPB201729.170004
    [4]Huang Zhongliang, Xu Qifu, Lai Dingguo, Yang Shi, Yang Li, Qiu Mengtong, Cong Peitian, Ren Shuqing, Wang Qiang. A low impedance large surface diode[J]. High Power Laser and Particle Beams, 2016, 28(01): 014005. doi: 10.11884/HPLPB201628.014005
    [5]Xia Junming, Sun Hailong, Huo Wenqing, Xu Yuemin, Sun Yueqiang, Bai Weihua, Liu Congliang, Meng Xiangguang. Effects of pressure on the pulsed magnetic confinement linear hollow cathode discharge[J]. High Power Laser and Particle Beams, 2015, 27(08): 084005. doi: 10.11884/HPLPB201527.084005
    [6]Lu Yiru, Zhang Chen, Ruan Jiufu, Yang Jun, Deng Guangsheng, Lv Guoqiang. Internal stress of photoresists for microfabrication of THz full-metal grating[J]. High Power Laser and Particle Beams, 2015, 27(11): 113101. doi: 10.11884/HPLPB201527.113101
    [7]Lu Yimin, Wang Shuyun, Guo Yanlong, Huang Guojun, Cheng Yong, Tian Fangtao. Mathematical model and experiment for preparing uniform film by PLD on large surface[J]. High Power Laser and Particle Beams, 2015, 27(07): 071007. doi: 10.11884/HPLPB201527.071007
    [8]Li Jinxi, Wu Wei, Lai Dingguo, Cheng Yinhui, Ma Liang, Zhao Mo, Guo Jinghai, Zhou Hui. Calculation of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2014, 26(03): 035005. doi: 10.3788/HPLPB201426.035005
    [9]Lin Jiping, Liang Juxi, Liu Zhengkun, Wang Qingbo, Bao Jianguang, Hong Yilin, Fu Shaojun. Meniscus coating and thickness measurement of photoresist[J]. High Power Laser and Particle Beams, 2014, 26(10): 101017. doi: 10.11884/HPLPB201426.101017
    [10]Zong Fangke, Yang Qinlao, Gu Li, Li Xiang, Zhang Jingjin. Design of large-format X-ray framing image tube[J]. High Power Laser and Particle Beams, 2012, 24(10): 2386-2390. doi: 10.3788/HPLPB20122410.2386
    [11]liu zengyi, lin zulun, wang xiaoju, cao guichuan, qi kangcheng. Characteristics of lanthanum hexaboride thin film cathode deposited on large area substrate[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [12]tang ying, yi ai-ping, liu jing-ru, qian hang, huang xin, yu li, su jian-cang, ding zhen-jie, ding yong-zhong, yu jian-guo. Experimental study on generation of large area uniform electron beam[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]chen shao-wu, wang qun-shu, zhao hong, shao bi-bo, wang fei, yuwen cui-lei, zhang jian-min. On-line parameters measurement method for high energy laser with large beam profile[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [14]lin zu-lun, cao gui-chuan, zhang yi-de, chen ze-xiang, qi kang-cheng. Large area ring-shaped LaB6 cathode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]yang an-min, wu deng-xue, liu chen-jun, xia lian-sheng, wang wen-dou, zhang kai-zhi. Large area dispenser cathode applied to high current linac[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [16]zhang yan, zhang rong zhu, dong jun, zhang jun, cai bang wei. Digital knifeedge testing technology on microoptical surface characterization[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [17]wang zhan-shan, zhang zhong, wang feng-li, wu wen-juan, wang hong-chang, qin shu-ji, chen ling-yan. Fabrication of the multilayer beam splitters with large area for soft Xray laser interferometer[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
    [18]zheng jian-gang, cai bang-wei, sui zhan, lu jing-ping, zheng kui-xing, zhang xiong-jun, dong yun, feng bin. Influence on discharge uniformity of electrodes configuration[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(1)

    1. 张耀文,张政权,刘庆想,欧伟丽. 新型双向储能变流器分析与研究. 太阳能学报. 2022(04): 82-89 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 82.4 %META: 82.4 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.2 %其他: 0.2 %Central District: 0.2 %Central District: 0.2 %China: 0.5 %China: 0.5 %India: 0.1 %India: 0.1 %Koesan: 0.3 %Koesan: 0.3 %Taiwan, China: 0.3 %Taiwan, China: 0.3 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %中山: 0.1 %中山: 0.1 %北京: 14.8 %北京: 14.8 %十堰: 0.2 %十堰: 0.2 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.9 %台州: 0.9 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.3 %太原: 0.3 %宜春: 0.2 %宜春: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %恩施: 0.1 %恩施: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %株洲: 0.2 %株洲: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 2.9 %漯河: 2.9 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.6 %苏州: 0.6 %衢州: 0.1 %衢州: 0.1 %西宁: 44.9 %西宁: 44.9 %西安: 0.2 %西安: 0.2 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.0 %郑州: 1.0 %长沙: 2.2 %长沙: 2.2 %青岛: 0.5 %青岛: 0.5 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Central DistrictChinaIndiaKoesanTaiwan, China[]上海中山北京十堰南京南通台州合肥哈尔滨哥伦布嘉兴天津太原宜春宣城常州广州张家口徐州恩施新乡无锡昆明晋城普洱杭州株洲桃园武汉沈阳洛阳深圳温州湖州湘潭漯河石家庄福州秦皇岛纽约芒廷维尤芝加哥苏州衢州西宁西安运城邯郸郑州长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (615) PDF downloads(66) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return