Zhang Haoran, Zeng Qin, Chen Chong, et al. Testing and analysis of coupled program of MCNP and FISPACT[J]. High Power Laser and Particle Beams, 2017, 29: 036025. doi: 10.11884/HPLPB201729.160424
Citation: Zhang Wei, Xu Sha, Qin Fen, et al. Design of a compact S-band relativistic magnetron operating at low magnetic field[J]. High Power Laser and Particle Beams, 2023, 35: 093001. doi: 10.11884/HPLPB202335.230058

Design of a compact S-band relativistic magnetron operating at low magnetic field

doi: 10.11884/HPLPB202335.230058
  • Received Date: 2023-03-23
  • Accepted Date: 2023-07-07
  • Rev Recd Date: 2023-07-05
  • Available Online: 2023-07-11
  • Publish Date: 2023-09-15
  • For compact high-power microwave devices operating at low magnetic field, a compact S-band relativistic magnetron operating at low magnetic field was designed and simulated with three-dimensional particle-in-cell codes. This tube radiates TE11 mode in circular waveguide with diffraction output structure. As the cutoff radius of TE11 mode is the smallest in circular waveguide, compared with higher modes, the radius of the output waveguide could be reduced obviously. The output performance as a function of magnetic field, radius of waveguide and angle was studied. Typical simulation results show that microwave power of 567 MW was generated at 2.37 GHz when the voltage and magnetic field were 352 kV and 0.34 T, the power conversion efficiency was 62.5%, and the radius of waveguide was only 77.5 mm.
  • [1]
    Benford J. History and future of the relativistic magnetron[C]//2010 International Conference on the Origins and Evolution of the Cavity Magnetron. 2010: 40-45.
    [2]
    Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
    [3]
    张兆镗. 磁控管的历史、现状与未来发展—兼论微波功率应用的前景[J]. 真空电子技术, 2016(2):38-41,46

    Zhang Zhaotang. The history, present status and future development of magnetrons-foreground of microwave power applications[J]. Vacuum Electronics, 2016(2): 38-41,46
    [4]
    Cheng Renjie, Li Tianming, Qin Fen, et al. An efficient all cavity axial extraction relativistic magnetron with virtual cathode[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2165-2169. doi: 10.1109/TED.2020.2978888
    [5]
    Xu Sha, Lei Lurong, Qin Fen, et al. Compact, high power and high efficiency relativistic magnetron with L-band all cavity axial extraction[J]. Physics of Plasmas, 2018, 25: 083301. doi: 10.1063/1.5041860
    [6]
    Fang Xianghe, Qin Fen, Zhang Yong, et al. S-band GW-level relativistic magnetron operating at relatively low applied voltage[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1111-1118. doi: 10.1109/TMTT.2021.3128649
    [7]
    孙晓亮, 张军, 李伟. X波段衍射输出相对论磁控管的粒子模拟研究[J]. 微波学报, 2014, 30(s1):422-425

    Sun Xiaoliang, Zhang Jun, Li Wei. Simulation study of an X-band relativistic magnetron with diffraction output[J]. Journal of Microwaves, 2014, 30(s1): 422-425
    [8]
    王冬, 秦奋, 杨郁林, 等. L波段全腔提取轴向输出相对论磁控管设计[J]. 强激光与粒子束, 2016, 28:033013 doi: 10.11884/HPLPB201628.033013

    Wang Dong, Qin Fen, Yang Yulin, et al. Design of L band all cavity axial extraction relativistic magnetron[J]. High Power Laser and Particle Beams, 2016, 28: 033013 doi: 10.11884/HPLPB201628.033013
    [9]
    Fuks M I, Kovalev N F, Andreev A D, et al. Mode conversion in a magnetron with axial extraction of radiation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 620-626. doi: 10.1109/TPS.2006.875770
    [10]
    Li Wei, Liu Yonggui. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output[J]. Journal of Applied Physics, 2009, 106: 053303. doi: 10.1063/1.3211323
    [11]
    Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
    [12]
    Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [13]
    Lei Lurong, Qin Fen, Xu Sha, et al. Preliminary experimental investigation of a compact high-efficiency relativistic magnetron with low guiding magnetic field[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 209-213. doi: 10.1109/TPS.2018.2879820
    [14]
    秦奋, 张勇, 鞠炳全, 等. L波段相对论磁控管长时间稳定运行实验研究[J]. 强激光与粒子束, 2021, 33:073002 doi: 10.11884/HPLPB202133.210137

    Qin Fen, Zhang Yong, Ju Bingquan, et al. Experimental investigation of L-band relativistic magnetron at long-term steady operation[J]. High Power Laser and Particle Beams, 2021, 33: 073002 doi: 10.11884/HPLPB202133.210137
    [15]
    Fuks M, Schamiloglu E. Rapid start of oscillations in a magnetron with a "transparent" cathode[J]. Physical Review Letters, 2005, 95: 205101. doi: 10.1103/PhysRevLett.95.205101
    [16]
    Prasad S. Fast start of oscillations in a short-pulse relativistic magnetron driven by a transparent cathode[D]. New Mexico: The University of New Mexico, 2010.
    [17]
    苏黎, 李天明, 李家胤. 相对论磁控管透明阴极的仿真与实验[J]. 强激光与粒子束, 2011, 23:3039-3042 doi: 10.3788/HPLPB20112311.3039

    Su Li, Li Tianming, Li Jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23: 3039-3042 doi: 10.3788/HPLPB20112311.3039
    [18]
    周豪, 蔡伟鸿, 王姣银, 等. 相对论磁控管透明阴极技术作用机理研究[J]. 强激光与粒子束, 2021, 33:073007 doi: 10.11884/HPLPB202133.210089

    Zhou Hao, Cai Weihong, Wang Jiaoyin, et al. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33: 073007 doi: 10.11884/HPLPB202133.210089
    [19]
    Saveliev Y M, Spark S N, Kerr B A, et al. Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 478-484. doi: 10.1109/27.887651
    [20]
    Gilgenbach R M, Lopez M R, Jones M C, et al. Effects of cathode endcaps on long-pulse, relativistic magnetron operation[C]//Twenty Seventh International Conference on Infrared and Millimeter Waves. 2002: 137-138.
    [21]
    刘则阳, 李思锐, 樊玉伟, 等. 阴极帽结构L波段相对论磁控管的效率提升[J]. 强激光与粒子束, 2021, 33:073006 doi: 10.11884/HPLPB202133.210119

    Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006 doi: 10.11884/HPLPB202133.210119
    [22]
    Leach C, Prasad S, Fuks M I, et al. Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 282-288. doi: 10.1109/TPS.2016.2644625
    [23]
    Liu M, Schamiloglu E, Fuks M I, et al. A “crab-like” A6 relativistic magnetron with diffraction output driven by a transparent cathode[J]. Physics of Plasmas, 2019, 26: 013301. doi: 10.1063/1.5079761
    [24]
    Li Yong, Liu Meiqin, Liu Chunliang, et al. Mode control by rearrangement of the slow wave structure in a 12-cavity relativistic magnetron with diffraction output using single-stepped cavities driven by a transparent cathode[J]. AIP Advances, 2021, 11: 035306. doi: 10.1063/5.0041527
    [25]
    李伟, 刘永贵. 磁控管衍射输出结构的π模特性[J]. 强激光与粒子束, 2011, 23:735-738 doi: 10.3788/HPLPB20112303.0735

    Li Wei, Liu Yonggui. Characteristic of π mode dispersion in diffraction output of magnetron[J]. High Power Laser and Particle Beams, 2011, 23: 735-738 doi: 10.3788/HPLPB20112303.0735
  • Relative Articles

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 78.8 %META: 78.8 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯兰堡: 0.4 %伊斯兰堡: 0.4 %保定: 0.3 %保定: 0.3 %北京: 2.9 %北京: 2.9 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 1.6 %台州: 1.6 %合肥: 0.6 %合肥: 0.6 %周口: 0.1 %周口: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.5 %哈尔科夫: 1.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.6 %大连: 0.6 %天津: 0.1 %天津: 0.1 %娄底: 0.1 %娄底: 0.1 %安德森: 0.4 %安德森: 0.4 %宜昌: 0.4 %宜昌: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 1.7 %张家口: 1.7 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %拉帕汉诺克县: 0.1 %拉帕汉诺克县: 0.1 %新加坡: 0.4 %新加坡: 0.4 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.1 %普赖恩维尔: 0.1 %杭州: 1.0 %杭州: 1.0 %梧州: 0.1 %梧州: 0.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.9 %沃思堡: 0.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %淄博: 1.7 %淄博: 1.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.6 %湖州: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 42.2 %芒廷维尤: 42.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 13.2 %西宁: 13.2 %西安: 0.6 %西安: 0.6 %诺沃克: 4.1 %诺沃克: 4.1 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.6 %运城: 1.6 %遵义: 0.4 %遵义: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %青岛: 0.7 %青岛: 0.7 %其他其他ChinaUnited States上海东莞临汾丹东伊斯兰堡保定北京南京南通台州合肥周口哈密哈尔滨哈尔科夫嘉兴大连天津娄底安德森宜昌常州常德广州廊坊张家口张家界徐州德阳惠州成都拉帕汉诺克县新加坡昆明晋城普赖恩维尔杭州梧州武汉沃思堡沈阳洛阳济南淄博深圳温州湖州漯河烟台班加罗尔石家庄秦皇岛绵阳芒廷维尤芝加哥苏州荆州衢州西宁西安诺沃克贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (747) PDF downloads(94) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return