Citation: | Zhang Wei, Xu Sha, Qin Fen, et al. Design of a compact S-band relativistic magnetron operating at low magnetic field[J]. High Power Laser and Particle Beams, 2023, 35: 093001. doi: 10.11884/HPLPB202335.230058 |
[1] |
Benford J. History and future of the relativistic magnetron[C]//2010 International Conference on the Origins and Evolution of the Cavity Magnetron. 2010: 40-45.
|
[2] |
Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
|
[3] |
张兆镗. 磁控管的历史、现状与未来发展—兼论微波功率应用的前景[J]. 真空电子技术, 2016(2):38-41,46
Zhang Zhaotang. The history, present status and future development of magnetrons-foreground of microwave power applications[J]. Vacuum Electronics, 2016(2): 38-41,46
|
[4] |
Cheng Renjie, Li Tianming, Qin Fen, et al. An efficient all cavity axial extraction relativistic magnetron with virtual cathode[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2165-2169. doi: 10.1109/TED.2020.2978888
|
[5] |
Xu Sha, Lei Lurong, Qin Fen, et al. Compact, high power and high efficiency relativistic magnetron with L-band all cavity axial extraction[J]. Physics of Plasmas, 2018, 25: 083301. doi: 10.1063/1.5041860
|
[6] |
Fang Xianghe, Qin Fen, Zhang Yong, et al. S-band GW-level relativistic magnetron operating at relatively low applied voltage[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1111-1118. doi: 10.1109/TMTT.2021.3128649
|
[7] |
孙晓亮, 张军, 李伟. X波段衍射输出相对论磁控管的粒子模拟研究[J]. 微波学报, 2014, 30(s1):422-425
Sun Xiaoliang, Zhang Jun, Li Wei. Simulation study of an X-band relativistic magnetron with diffraction output[J]. Journal of Microwaves, 2014, 30(s1): 422-425
|
[8] |
王冬, 秦奋, 杨郁林, 等. L波段全腔提取轴向输出相对论磁控管设计[J]. 强激光与粒子束, 2016, 28:033013 doi: 10.11884/HPLPB201628.033013
Wang Dong, Qin Fen, Yang Yulin, et al. Design of L band all cavity axial extraction relativistic magnetron[J]. High Power Laser and Particle Beams, 2016, 28: 033013 doi: 10.11884/HPLPB201628.033013
|
[9] |
Fuks M I, Kovalev N F, Andreev A D, et al. Mode conversion in a magnetron with axial extraction of radiation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 620-626. doi: 10.1109/TPS.2006.875770
|
[10] |
Li Wei, Liu Yonggui. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output[J]. Journal of Applied Physics, 2009, 106: 053303. doi: 10.1063/1.3211323
|
[11] |
Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
|
[12] |
Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
|
[13] |
Lei Lurong, Qin Fen, Xu Sha, et al. Preliminary experimental investigation of a compact high-efficiency relativistic magnetron with low guiding magnetic field[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 209-213. doi: 10.1109/TPS.2018.2879820
|
[14] |
秦奋, 张勇, 鞠炳全, 等. L波段相对论磁控管长时间稳定运行实验研究[J]. 强激光与粒子束, 2021, 33:073002 doi: 10.11884/HPLPB202133.210137
Qin Fen, Zhang Yong, Ju Bingquan, et al. Experimental investigation of L-band relativistic magnetron at long-term steady operation[J]. High Power Laser and Particle Beams, 2021, 33: 073002 doi: 10.11884/HPLPB202133.210137
|
[15] |
Fuks M, Schamiloglu E. Rapid start of oscillations in a magnetron with a "transparent" cathode[J]. Physical Review Letters, 2005, 95: 205101. doi: 10.1103/PhysRevLett.95.205101
|
[16] |
Prasad S. Fast start of oscillations in a short-pulse relativistic magnetron driven by a transparent cathode[D]. New Mexico: The University of New Mexico, 2010.
|
[17] |
苏黎, 李天明, 李家胤. 相对论磁控管透明阴极的仿真与实验[J]. 强激光与粒子束, 2011, 23:3039-3042 doi: 10.3788/HPLPB20112311.3039
Su Li, Li Tianming, Li Jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23: 3039-3042 doi: 10.3788/HPLPB20112311.3039
|
[18] |
周豪, 蔡伟鸿, 王姣银, 等. 相对论磁控管透明阴极技术作用机理研究[J]. 强激光与粒子束, 2021, 33:073007 doi: 10.11884/HPLPB202133.210089
Zhou Hao, Cai Weihong, Wang Jiaoyin, et al. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33: 073007 doi: 10.11884/HPLPB202133.210089
|
[19] |
Saveliev Y M, Spark S N, Kerr B A, et al. Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 478-484. doi: 10.1109/27.887651
|
[20] |
Gilgenbach R M, Lopez M R, Jones M C, et al. Effects of cathode endcaps on long-pulse, relativistic magnetron operation[C]//Twenty Seventh International Conference on Infrared and Millimeter Waves. 2002: 137-138.
|
[21] |
刘则阳, 李思锐, 樊玉伟, 等. 阴极帽结构L波段相对论磁控管的效率提升[J]. 强激光与粒子束, 2021, 33:073006 doi: 10.11884/HPLPB202133.210119
Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006 doi: 10.11884/HPLPB202133.210119
|
[22] |
Leach C, Prasad S, Fuks M I, et al. Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 282-288. doi: 10.1109/TPS.2016.2644625
|
[23] |
Liu M, Schamiloglu E, Fuks M I, et al. A “crab-like” A6 relativistic magnetron with diffraction output driven by a transparent cathode[J]. Physics of Plasmas, 2019, 26: 013301. doi: 10.1063/1.5079761
|
[24] |
Li Yong, Liu Meiqin, Liu Chunliang, et al. Mode control by rearrangement of the slow wave structure in a 12-cavity relativistic magnetron with diffraction output using single-stepped cavities driven by a transparent cathode[J]. AIP Advances, 2021, 11: 035306. doi: 10.1063/5.0041527
|
[25] |
李伟, 刘永贵. 磁控管衍射输出结构的π模特性[J]. 强激光与粒子束, 2011, 23:735-738 doi: 10.3788/HPLPB20112303.0735
Li Wei, Liu Yonggui. Characteristic of π mode dispersion in diffraction output of magnetron[J]. High Power Laser and Particle Beams, 2011, 23: 735-738 doi: 10.3788/HPLPB20112303.0735
|