Yang Hang, He Jianguo, Huang Wen, et al. Dynamic prediction of the shape of MRF removal function[J]. High Power Laser and Particle Beams, 2015, 27: 092011. doi: 10.11884/HPLPB201527.092011
Citation: Shi Xiaolei, Chen Jinhui, Wang Guanwen, et al. Application of nonlinear transmission line in DSRD pulse generator[J]. High Power Laser and Particle Beams, 2023, 35: 105002. doi: 10.11884/HPLPB202335.230068

Application of nonlinear transmission line in DSRD pulse generator

doi: 10.11884/HPLPB202335.230068
  • Received Date: 2023-03-31
  • Accepted Date: 2023-06-02
  • Rev Recd Date: 2023-07-20
  • Available Online: 2023-07-28
  • Publish Date: 2023-10-08
  • There is an increasingly higher requirement on the pulse source of kicker in the injection and extraction system with the development of accelerators. As a special nanosecond switch, Drift Step Recovery Diode (DSRD) has a great application prospect in pulse power technology for its notably short switching-off time and large working current. However, there are some factors such as pre-pulse that make the pulse waveform deviate from the ideal shape. A prototype of pulse generator was designed and tested. It is based on a basic DSRD circuit, at the same time, the Non-Linear Transmission Line (NTL) is used to shape the pulse, compress the edge and reduce the residual voltage. Its circuit experiment shows that the pulse amplitude on resistor load of 50 Ω is about 10 kV, the rise time and fall time are about 2 ns (10%−90%) and the bottom width (3%−3%) is less than 8 ns.
  • [1]
    Xu Gang, Cui Xiaohao, Duan Zhe, et al. Progress of lattice design and physics studies on the high energy photon source[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1375-1378.
    [2]
    焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [3]
    陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31:040017 doi: 10.11884/HPLPB201931.190007

    Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017 doi: 10.11884/HPLPB201931.190007
    [4]
    Shang L, Liu W, Lu Y, et al. Status of the R&D for HALS injection system[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019.
    [5]
    Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proceedings of IPAC 2017. 2017: 2821-2823.
    [6]
    Cook E G. Review of solid-state modulators[C]//Proceedings of the XXth International Linac Conference. 2000.
    [7]
    吴佳霖, 刘英坤. 高功率半导体开关器件DSRD的研究进展[J]. 微纳电子技术, 2015, 52(4):211-215,250

    Wu Jialin, Liu Yingkun. Research development of the high power semiconductor switching device DSRD[J]. Micronanoelectronic Technology, 2015, 52(4): 211-215,250
    [8]
    Benwell A, Burkhart C, Krasnykh A, et al. A 5KV, 3MHz solid-state modulator based on the DSRD switch for an ultra-fast beam kicker[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2013: 328-331.
    [9]
    Krasnykh A. Overview of driver technologies for nanosecond TEM kickers[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 3645-3647.
    [10]
    镡延桢, 王明宝. 铁氧体同轴线的特性及其应用[J]. 传输线技术, 1980(5):10-13,20

    Tan Yanzhen, Wang Mingbao. Characteristics and application of ferrite coaxial line[J]. Optical Fiber & Electric Cable and Their Applications, 1980(5): 10-13,20
    [11]
    铁氧体形成线课题组. 铁氧体形成线概况[J]. 传输线技术, 1978(2):1-16

    Ferrite Forming Line Research Group. Overview of ferrite formation line[J]. Transmission Line Technology, 1978(2): 1-16
    [12]
    Grekhov I V, Mesyats G A. Physical basis for high-power semiconductor nanosecond opening switches[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1540-1544. doi: 10.1109/27.901229
    [13]
    Brylevsky V I, Efanov V M, Kardo-Sysyev A F, et al. Power nanosecond semiconductor opening plasma switches[C]//Proceedings of 1996 International Power Modulator Symposium. 1996: 51-54.
    [14]
    Lyublinsky A G, Korotkov S V, Aristov Y V, et al. Pulse power nanosecond-range DSRD-based generators for electric discharge technologies[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2625-2629. doi: 10.1109/TPS.2013.2264328
    [15]
    乔中兴. 铁氧体填充非线性同轴传输线相关特性的研究[D]. 杭州: 浙江工业大学, 2016: 17-21

    Qiao Zhongxing. Investigation of ferrite-filled coaxial nonlinear transmission lines related features[D]. Hangzhou: Zhejiang University of Technology, 2016: 17-21
  • Relative Articles

    [1]Mi Zhikai, Nie Fengming, Huang Siling, Xue Feng. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams, 2024, 36(9): 091001. doi: 10.11884/HPLPB202436.240068
    [2]Yang Hang, Zhang Shuai, Zhang Yunfei, Huang Wen, He Jianguo. Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization[J]. High Power Laser and Particle Beams, 2022, 34(8): 082002. doi: 10.11884/HPLPB202234.210353
    [3]Yang Hang, Yu Yumin, Zhang Yunfei, Huang Wen, He Jianguo. Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation[J]. High Power Laser and Particle Beams, 2021, 33(10): 101003. doi: 10.11884/HPLPB202133.210151
    [4]Lin Zewen, Wang Zhenzhong, Huang Xuepeng, Kong Liuwei. Influence of robotic structural deformation on bonnet polishing removal function[J]. High Power Laser and Particle Beams, 2021, 33(5): 051002. doi: 10.11884/HPLPB202133.200293
    [5]Yang Hang, Ma Dengqiu, Zhang Qiang, Liu Xiaoyong, Fan Wei, Zhang Yunfei, Huang Wen, He Jianguo. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31(6): 062002. doi: 10.11884/HPLPB201931.180373
    [6]Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340
    [7]Lei Pengli, Hou Jing, Wang Jian, Deng Wenhui, Zhong Bo. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31(11): 111002. doi: 10.11884/HPLPB201931.190177
    [8]Fu Wenjing, Mi Shaogui, Zhang Rongzhu. Influence of uniformity of polishing particle size on material removal characteristics in fluid jet polishing[J]. High Power Laser and Particle Beams, 2018, 30(1): 011001. doi: 10.11884/HPLPB201830.170295
    [9]Jia Yang, Ji Fang, Zhang Yunfei, Huang Wen. Adaptive tool path of magnetorheological polishing based on discrete gradient clustering[J]. High Power Laser and Particle Beams, 2015, 27(12): 121008. doi: 10.11884/HPLPB201527.121008
    [11]Zhao Heng, Yan Dingyao, Cai Hongmei, Bao Zhenjun. Removal model of plane swinging polishing[J]. High Power Laser and Particle Beams, 2014, 26(03): 032009. doi: 10.3788/HPLPB201426.032009
    [12]Xie Lei, Zhang Yunfan, You Yunfeng, Ma Ping, Liu Yibin, Yan Dingyao. Calculation and simulation on mid-spatial frequency error in continuous polishing[J]. High Power Laser and Particle Beams, 2013, 25(12): 3307-3310. doi: 3307
    [13]Zhong Bo, Chen Xianhua, Wang Jian, Deng Wenhui, Xie Ruiqing, Yuan Zhigang, Liao Defeng. Controlling mid-spatial frequency error on 400 mm aperture window[J]. High Power Laser and Particle Beams, 2013, 25(12): 3287-3291. doi: 3287
    [14]Deng Wenhui, Tang Caixue, Chen Xianhua, Wang Jian, Zhong Bo. Path segment division and feed-rate solution in ion beam figuring[J]. High Power Laser and Particle Beams, 2013, 25(12): 3292-3296. doi: 3292
    [15]Qin Beizhi, Yang Liming, Zhu Rihong, Hou Jing, Yuan Zhigang, Zheng Nan, Tang Caixue, . Polishing parameters of magnetorheological finishing for high precision optical components[J]. High Power Laser and Particle Beams, 2013, 25(09): 2281-2286. doi: 10.3788/HPLPB20132509.2281
    [16]wan yongjian, shi chunyan, yuan jiahu, wu fan. Control method of polishing errors by dwell time compensation[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [17]zheng nan, li haibo, yuan zhigang, zhong bo. Control software development for magnetorheological finishing of large aperture optical elements[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [18]yang wei, guo yin-biao, xu qiao, li ya-guo. Edge effects on material removal amount in ultra precise polishing process[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [19]hou jing, xu qiao, lei xiang-yang, zhou li-shu, zhang qing-hua, wang jian. Removal function of computerized numerical controlled chemical polishing based on the Marangoni interface effect[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]zeng zhi-ge, deng jian-ming, li xiao-jin, ling ning, jiang wen-han. Investigation of deformation experiment for active polishing lap[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
  • Cited by

    Periodical cited type(14)

    1. 张伟,郭昆明. 冲击波预裂工艺技术在高地压矿井上覆硬岩层的工程实践. 现代矿业. 2024(01): 91-94 .
    2. 陆金波,贺宗鉴,朱鑫磊,黄昆. 基于晶闸管的放电冲击波油气增产装置研制. 科学技术与工程. 2024(05): 1885-1892 .
    3. 闫小兵,王秀龙,贺能,马正腾,张凤鹏. 金属丝电爆炸的电流波形特征及其破岩效果研究. 中国矿业. 2024(06): 210-217 .
    4. 冯国瑞,朱林俊,郭军,王朋飞,高瑞,文晓泽,樊一江,钱瑞鹏,米鑫程. 电脉冲循环冲击作用对花岗岩抗剪性能弱化研究. 中南大学学报(自然科学版). 2023(03): 785-796 .
    5. 王兆寒,张晨晖,于航,匡春霖,张凤鹏,彭建宇. 铜丝电爆炸载荷下红砂岩破裂行为实验. 有色金属(矿山部分). 2022(03): 36-41 .
    6. 秦勇,李恒乐,张永民,赵有志,赵锦程,邱爱慈. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析. 煤田地质与勘探. 2021(01): 108-118+129 .
    7. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 .
    8. 闫广亮,张凤鹏,郝红泽,高继开. 电爆炸破碎岩石类脆性材料实验方法与应用. 煤炭学报. 2021(10): 3203-3211 .
    9. 冉慧娟,耿召阳,赵伟康,张金梁,王珏,严萍. 脉冲大电流应用电缆的设计. 科学技术与工程. 2020(03): 1064-1070 .
    10. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 .
    11. 薛乐星,潘文,冯博,封雪松,赵娟,冯晓军. 等离子体起爆条件对不敏感含能材料响应强度的影响. 火炸药学报. 2020(03): 320-324 .
    12. 汪倩,李晓蔚,阴国锋,范云飞,石桓通,李兴文. 水中铜丝电爆炸激光阴影及流体模拟研究. 高电压技术. 2020(07): 2586-2592 .
    13. 鄢宇杰,付荣耀,李楠,孙鹞鸿,严萍. 电弧压裂技术研究现状与发展. 高压电器. 2019(09): 71-77 .
    14. 张永民,安世岗,陈殿赋,师庆民,张增辉,赵有志,罗伙根,邱爱慈,秦勇. 可控冲击波增透保德煤矿8~#煤层的先导性试验. 煤矿安全. 2019(10): 14-17+21 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.7 %FULLTEXT: 17.7 %META: 79.0 %META: 79.0 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %China: 0.6 %China: 0.6 %India: 0.3 %India: 0.3 %上海: 1.6 %上海: 1.6 %东京: 0.1 %东京: 0.1 %东莞: 0.5 %东莞: 0.5 %中山: 0.1 %中山: 0.1 %北京: 10.8 %北京: 10.8 %南京: 0.7 %南京: 0.7 %南阳: 0.2 %南阳: 0.2 %台州: 1.0 %台州: 1.0 %吉林: 0.2 %吉林: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %宁波: 0.2 %宁波: 0.2 %宣城: 0.1 %宣城: 0.1 %巴中: 0.2 %巴中: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %张家口: 0.6 %张家口: 0.6 %徐州: 0.1 %徐州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %汕头: 0.2 %汕头: 0.2 %沧州: 0.1 %沧州: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %维克多维尔: 0.2 %维克多维尔: 0.2 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 0.9 %芝加哥: 0.9 %衢州: 0.7 %衢州: 0.7 %西宁: 45.3 %西宁: 45.3 %西安: 0.1 %西安: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.1 %运城: 0.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %锦州: 0.1 %锦州: 0.1 %长春: 0.5 %长春: 0.5 %长沙: 1.0 %长沙: 1.0 %其他ChinaIndia上海东京东莞中山北京南京南阳台州吉林哥伦布大连天津宁波宣城巴中常州常德广州张家口徐州成都扬州新乡无锡昆明晋城普洱杭州桃园武汉汕头沧州淮南深圳温州湖州漯河石家庄秦皇岛维克多维尔绵阳芒廷维尤芝加哥衢州西宁西安诺沃克运城遵义郑州重庆锦州长春长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (652) PDF downloads(97) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return