Citation: | Shi Xiaolei, Chen Jinhui, Wang Guanwen, et al. Application of nonlinear transmission line in DSRD pulse generator[J]. High Power Laser and Particle Beams, 2023, 35: 105002. doi: 10.11884/HPLPB202335.230068 |
[1] |
Xu Gang, Cui Xiaohao, Duan Zhe, et al. Progress of lattice design and physics studies on the high energy photon source[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1375-1378.
|
[2] |
焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136
Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
|
[3] |
陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31:040017 doi: 10.11884/HPLPB201931.190007
Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017 doi: 10.11884/HPLPB201931.190007
|
[4] |
Shang L, Liu W, Lu Y, et al. Status of the R&D for HALS injection system[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019.
|
[5] |
Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proceedings of IPAC 2017. 2017: 2821-2823.
|
[6] |
Cook E G. Review of solid-state modulators[C]//Proceedings of the XXth International Linac Conference. 2000.
|
[7] |
吴佳霖, 刘英坤. 高功率半导体开关器件DSRD的研究进展[J]. 微纳电子技术, 2015, 52(4):211-215,250
Wu Jialin, Liu Yingkun. Research development of the high power semiconductor switching device DSRD[J]. Micronanoelectronic Technology, 2015, 52(4): 211-215,250
|
[8] |
Benwell A, Burkhart C, Krasnykh A, et al. A 5KV, 3MHz solid-state modulator based on the DSRD switch for an ultra-fast beam kicker[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2013: 328-331.
|
[9] |
Krasnykh A. Overview of driver technologies for nanosecond TEM kickers[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 3645-3647.
|
[10] |
镡延桢, 王明宝. 铁氧体同轴线的特性及其应用[J]. 传输线技术, 1980(5):10-13,20
Tan Yanzhen, Wang Mingbao. Characteristics and application of ferrite coaxial line[J]. Optical Fiber & Electric Cable and Their Applications, 1980(5): 10-13,20
|
[11] |
铁氧体形成线课题组. 铁氧体形成线概况[J]. 传输线技术, 1978(2):1-16
Ferrite Forming Line Research Group. Overview of ferrite formation line[J]. Transmission Line Technology, 1978(2): 1-16
|
[12] |
Grekhov I V, Mesyats G A. Physical basis for high-power semiconductor nanosecond opening switches[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1540-1544. doi: 10.1109/27.901229
|
[13] |
Brylevsky V I, Efanov V M, Kardo-Sysyev A F, et al. Power nanosecond semiconductor opening plasma switches[C]//Proceedings of 1996 International Power Modulator Symposium. 1996: 51-54.
|
[14] |
Lyublinsky A G, Korotkov S V, Aristov Y V, et al. Pulse power nanosecond-range DSRD-based generators for electric discharge technologies[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2625-2629. doi: 10.1109/TPS.2013.2264328
|
[15] |
乔中兴. 铁氧体填充非线性同轴传输线相关特性的研究[D]. 杭州: 浙江工业大学, 2016: 17-21
Qiao Zhongxing. Investigation of ferrite-filled coaxial nonlinear transmission lines related features[D]. Hangzhou: Zhejiang University of Technology, 2016: 17-21
|
[1] | Mi Zhikai, Nie Fengming, Huang Siling, Xue Feng. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams, 2024, 36(9): 091001. doi: 10.11884/HPLPB202436.240068 |
[2] | Yang Hang, Zhang Shuai, Zhang Yunfei, Huang Wen, He Jianguo. Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization[J]. High Power Laser and Particle Beams, 2022, 34(8): 082002. doi: 10.11884/HPLPB202234.210353 |
[3] | Yang Hang, Yu Yumin, Zhang Yunfei, Huang Wen, He Jianguo. Relationship between the geometric characteristics of the polished area and the key parameters of the flow field creation[J]. High Power Laser and Particle Beams, 2021, 33(10): 101003. doi: 10.11884/HPLPB202133.210151 |
[4] | Lin Zewen, Wang Zhenzhong, Huang Xuepeng, Kong Liuwei. Influence of robotic structural deformation on bonnet polishing removal function[J]. High Power Laser and Particle Beams, 2021, 33(5): 051002. doi: 10.11884/HPLPB202133.200293 |
[5] | Yang Hang, Ma Dengqiu, Zhang Qiang, Liu Xiaoyong, Fan Wei, Zhang Yunfei, Huang Wen, He Jianguo. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31(6): 062002. doi: 10.11884/HPLPB201931.180373 |
[6] | Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340 |
[7] | Lei Pengli, Hou Jing, Wang Jian, Deng Wenhui, Zhong Bo. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31(11): 111002. doi: 10.11884/HPLPB201931.190177 |
[8] | Fu Wenjing, Mi Shaogui, Zhang Rongzhu. Influence of uniformity of polishing particle size on material removal characteristics in fluid jet polishing[J]. High Power Laser and Particle Beams, 2018, 30(1): 011001. doi: 10.11884/HPLPB201830.170295 |
[9] | Jia Yang, Ji Fang, Zhang Yunfei, Huang Wen. Adaptive tool path of magnetorheological polishing based on discrete gradient clustering[J]. High Power Laser and Particle Beams, 2015, 27(12): 121008. doi: 10.11884/HPLPB201527.121008 |
[11] | Zhao Heng, Yan Dingyao, Cai Hongmei, Bao Zhenjun. Removal model of plane swinging polishing[J]. High Power Laser and Particle Beams, 2014, 26(03): 032009. doi: 10.3788/HPLPB201426.032009 |
[12] | Xie Lei, Zhang Yunfan, You Yunfeng, Ma Ping, Liu Yibin, Yan Dingyao. Calculation and simulation on mid-spatial frequency error in continuous polishing[J]. High Power Laser and Particle Beams, 2013, 25(12): 3307-3310. doi: 3307 |
[13] | Zhong Bo, Chen Xianhua, Wang Jian, Deng Wenhui, Xie Ruiqing, Yuan Zhigang, Liao Defeng. Controlling mid-spatial frequency error on 400 mm aperture window[J]. High Power Laser and Particle Beams, 2013, 25(12): 3287-3291. doi: 3287 |
[14] | Deng Wenhui, Tang Caixue, Chen Xianhua, Wang Jian, Zhong Bo. Path segment division and feed-rate solution in ion beam figuring[J]. High Power Laser and Particle Beams, 2013, 25(12): 3292-3296. doi: 3292 |
[15] | Qin Beizhi, Yang Liming, Zhu Rihong, Hou Jing, Yuan Zhigang, Zheng Nan, Tang Caixue, . Polishing parameters of magnetorheological finishing for high precision optical components[J]. High Power Laser and Particle Beams, 2013, 25(09): 2281-2286. doi: 10.3788/HPLPB20132509.2281 |
[16] | wan yongjian, shi chunyan, yuan jiahu, wu fan. Control method of polishing errors by dwell time compensation[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- . |
[17] | zheng nan, li haibo, yuan zhigang, zhong bo. Control software development for magnetorheological finishing of large aperture optical elements[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[18] | yang wei, guo yin-biao, xu qiao, li ya-guo. Edge effects on material removal amount in ultra precise polishing process[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- . |
[19] | hou jing, xu qiao, lei xiang-yang, zhou li-shu, zhang qing-hua, wang jian. Removal function of computerized numerical controlled chemical polishing based on the Marangoni interface effect[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- . |
[20] | zeng zhi-ge, deng jian-ming, li xiao-jin, ling ning, jiang wen-han. Investigation of deformation experiment for active polishing lap[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- . |