Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Citation: Jiang Wentao, Zhao Rui, Cheng Wenlong. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071

Experimental and numerical study of embedded microchannel heat sink

doi: 10.11884/HPLPB202335.230071
  • Received Date: 2023-04-01
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-06-02
  • Available Online: 2023-08-09
  • Publish Date: 2023-09-15
  • To solve the heat dissipation problem of high heat flux density solid-state laser, a set of micro-compact embedded manifold S-shaped microchannel heat sink was developed using the MEMS technology and the microchannel/heat source co-design method. The heat exchanger uses continuous S-shaped microchannels and the manifold is used to form tiered and segmented flow. Experiment was conducted, using HFE-7100 as the cooling medium. Results show that the heat sink can dissipate 625 W/cm2, with a local maximum temperature of less than 100 ℃ and an average temperature rise of less than 45 ℃. Compared with the traditional manifold rectangular microchannel heat sink, the heat dissipation performance of S-shaped microchannel increased by 12%, but the flow resistance increased by about 56%. Numerical simulation methods were used to evaluate the structural parameters of the S-shaped microchannel heat sink’s heat dissipation ability and flow resistance by changing the amplitude and wavelength of the S shape according to the average temperature of the heating surface, average Nusselt number of the heat transfer surface, pressure drop, and comprehensive performance factor, to find the optimal structure design parameter combination of the S-shaped microchannel. The results show that the comprehensive performance factor of the heat sink has an optimal value under a specific S-shaped configuration, which will be used in subsequent studies.
  • [1]
    潘娜娜, 潘艳秋, 俞路, 等. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28:021002 doi: 10.11884/HPLPB201628.021002

    Pan Nana, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28: 021002 doi: 10.11884/HPLPB201628.021002
    [2]
    卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.3788/HPLPB20142605.51008

    Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.3788/HPLPB20142605.51008
    [3]
    Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367
    [4]
    Borah S, Tamuli B R, Bhanja D. Thermohydraulic performance intensification of wavy, double-layered microchannel heat sink with height tapering[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(1): 119-132. doi: 10.2514/1.T6590
    [5]
    高智刚, 郑达文, 尚小龙, 等. 功率模块正弦微通道热沉周向传热特性分析[J]. 工程热物理学报, 2022, 43(5):1267-1275

    Gao Zhigang, Zheng Dawen, Shang Xiaolong, et al. Circumferential heat transfer analysis of sinusoidal microchannel heat sink on power module[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1267-1275
    [6]
    Li Peisheng, Hong Jian, Zhang Ying, et al. Effect of waveform channel on the cooling performance of hybrid microchannel[J]. Journal of Thermophysics and Heat Transfer, 2022, 36(3): 520-533. doi: 10.2514/1.T6399
    [7]
    Al-Hasani H M, Freegah B. Influence of secondary flow angle and pin fin on hydro-thermal evaluation of double outlet serpentine mini-channel heat sink[J]. Results in Engineering, 2022, 16: 100670. doi: 10.1016/j.rineng.2022.100670
    [8]
    Zeng Chen, Song Yinxi, Zhou Xiang, et al. Experimental study on heat transfer and pressure drop characteristics in a microchannel heat exchanger assembly with s-shaped fins[J]. Applied Thermal Engineering, 2022, 210: 118406. doi: 10.1016/j.applthermaleng.2022.118406
    [9]
    Jiang Qingfeng, Pan Chongyao, Guo Ting, et al. Thermal hydraulic characteristics of trans-critical natural gas flowing through staggered S-shaped fin microchannel[J]. Cryogenics, 2022, 124: 103491. doi: 10.1016/j.cryogenics.2022.103491
    [10]
    Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. 1991: 59-63.
    [11]
    陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3):62-70

    Chen Chaowei, Wang Xinyu, Xin Gongming. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70
    [12]
    Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. doi: 10.1016/j.ijheatmasstransfer.2017.10.015
    [13]
    Drummond K P, Back D, Sinanis M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. doi: 10.1016/j.ijheatmasstransfer.2018.05.127
    [14]
    Drummond K P, Weibel J A, Garimella S V. Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119551. doi: 10.1016/j.ijheatmasstransfer.2020.119551
    [15]
    Pan Yuhui, Zhao Rui, Nian Yongle, et al. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122052. doi: 10.1016/j.ijheatmasstransfer.2021.122052
    [16]
    谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4):99-107

    Xie Wenyuan, Lu Xiaochen, Li Long, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107
    [17]
    毕胜山, 崔军卫, 马纶建, 等. HFE7100和HFE7500的热物理性质[J]. 化工学报, 2016, 67(5):1680-1686

    Bi Shengshan, Cui Junwei, Ma Lunjian, et al. Thermophysical properties of HFE7100 and HFE7500[J]. CIESC Journal, 2016, 67(5): 1680-1686
    [18]
    Rausch M H, Kretschmer L, Will S, et al. Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3759-3765.
    [19]
    Agarwal S K, Raja Rao M. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3547-3557. doi: 10.1016/0017-9310(96)00039-7
    [20]
    Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. doi: 10.1016/0017-9310(72)90054-3
  • Relative Articles

    [1]Li Yunfei, Shi Jinfang, Qiu Rong, Yu Jian, Guo Decheng, Zhou Lei. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34(6): 061003. doi: 10.11884/HPLPB202234.220060
    [2]Xu Ziyuan, Wang Yueliang, Zhao Yuan'an, Shao Jianda. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31(9): 091004. doi: 10.11884/HPLPB201931.190164
    [3]Han Wei, Xiang Yong, Wang Fang, Zhou Lidan, Feng Bin, Li Fuquan, Zhao Junpu, Zheng Kuixing, Zhu Qihua, Wei Xiaofeng, Zheng Wanguo, Gong Mali. Measurement of Raman scattering gain coefficient in large-aperture DKDP crystals irradiated by 351 nm pulses[J]. High Power Laser and Particle Beams, 2016, 28(02): 021005. doi: 10.11884/HPLPB201628.021005
    [4]Wu Shenjiang, Wang Nan, Su Junhong, Xu Junqi, Ge Jinman, Liu Bin, Guo Shuling. Laser-induced damage of diamond-like carbon films with horizontal electric field[J]. High Power Laser and Particle Beams, 2015, 27(09): 092003. doi: 10.11884/HPLPB201527.092003
    [5]Cheng Xiufeng, Xu Mingxia, Liu Baoan, Zhang Qinghua, Zhang Jianfeng, Wang Zhengping, Sun Xun, Xu Xinguang. Properties of DKDP crystals grown at different temperature[J]. High Power Laser and Particle Beams, 2014, 26(01): 012006. doi: 10.3788/HPLPB201426.012006
    [6]Qiu Rong, Wang Junbo, Ren Huan, Li Xiaohong, Shi Pengcheng, Liu Hao, Ma Ping. Growth of laser-induced damage in fused silica under nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(05): 1057-1062. doi: 10.3788/HPLPB20122405.1057
    [7]Wu Shenjiang, Su Junhong, Shi Wei, Wang Xinmei, Xu Junqi. Laser-induced damage morphology of diamond-like carbon films with external electric field[J]. High Power Laser and Particle Beams, 2012, 24(01): 207-209.
    [8]qiu rong, wang junbo, li xiaohong, shi pengcheng, liu hao, ma ping. Laser-induced damage on K9 surface under nanotosecond irradiation[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]liu xiaofeng, li xiao, zhao yuan'an, li dawei, shao jianda, fan zhengxiu. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [10]ling xiulan, zhao yuan, li dawei, shao jianda, fan zhengxiu. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [11]miao xinxiang, yuan xiaodong, wang chengcheng, wang haijun, lü haibing, xiang xia, zheng wanguo. Laser induced damage in fused silica contaminated by Al film[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [12]sun shaotao, ji lailin, wang zhengping, mu xiaoming, sun xun, xu xinguang, shi chongde. Growth and laser damage threshold of DKDP crystal grown by different methods[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [13]hua jinrong, zu xiaotao, li li, yuan xiaodong, zheng wanguo, jiang xiaodong. Numerical simulation of laser-induced damage on rear surface of optical material[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [14]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, zhao song-nan, xu shi-zhen, wang bi-yi, tian dong-bin. Laser-induced damage of sol-gel silica acid and basic thin films[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [15]miao xin-xiang, yuan xiao-dong, wang hai-jun, lü hai-bing, wang cheng-cheng, zheng wan-guo. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [16]sun shao-tao, ji lai-lin, wang zheng-ping, liu bing, mu xiao-ming, sun xun, xu xin-guang, shi chong-de. Growth and laser damage threshold of DKDP crystal from different material[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, xu shi-zhen, wang bi-yi, tian dong-bin, . Comparison of laser-induced damage of monolayer ZrO2 films preparated by PVD and sol-gel methods[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [18]yu ai-fang, fan fei-di, liu zhong-xing, zhu yong, chen chuang-tian. Effect of SiO2 barrier layer on laser induced damage threshold of second harmonic antireflection coatings on LiB3O5 crystal[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [19]jiang xiao-dong, huang zu-xing, ren huan, peng jing, ye lin, tang can. Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]gan rong-bing, lin li-bin, lu yong, liu qiang, zuo zhi-yun, jiang xiao-dong, huang zhu-xin, ye lin. Laser-induced bulk damage of UBK7 glass owing to its rear-surface defects[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.8 %FULLTEXT: 12.8 %META: 80.5 %META: 80.5 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.5 %其他: 0.5 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.3 %United States: 0.3 %[]: 0.4 %[]: 0.4 %上海: 1.2 %上海: 1.2 %东京都: 0.2 %东京都: 0.2 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.2 %佛山: 0.2 %北京: 8.3 %北京: 8.3 %十堰: 0.3 %十堰: 0.3 %南京: 2.6 %南京: 2.6 %南充: 0.1 %南充: 0.1 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.6 %咸阳: 0.6 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.7 %天津: 1.7 %太原: 1.0 %太原: 1.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %岩手: 0.3 %岩手: 0.3 %常州: 0.2 %常州: 0.2 %广州: 1.2 %广州: 1.2 %张家口: 1.2 %张家口: 1.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.2 %桂林: 0.2 %桃园: 0.1 %桃园: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %浙江省: 0.2 %浙江省: 0.2 %深圳: 0.6 %深圳: 0.6 %温州: 0.8 %温州: 0.8 %湖州: 0.2 %湖州: 0.2 %漯河: 2.2 %漯河: 2.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 32.6 %西宁: 32.6 %西安: 2.2 %西安: 2.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.9 %郑州: 0.9 %重庆: 0.2 %重庆: 0.2 %金华: 1.0 %金华: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 1.9 %长沙: 1.9 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaIndiaUnited KingdomUnited States[]上海东京都东莞中山临汾丹东丽水乐山佛山北京十堰南京南充南通厦门台州合肥咸阳嘉兴天津太原宁波安康宣城岩手常州广州张家口徐州成都扬州无锡昆明晋城普洱杭州桂林桃园榆林武汉沈阳洛阳浙江省深圳温州湖州漯河石家庄福州秦皇岛绍兴绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (1031) PDF downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return