Citation: | Jiang Wentao, Zhao Rui, Cheng Wenlong. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071 |
[1] |
潘娜娜, 潘艳秋, 俞路, 等. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28:021002 doi: 10.11884/HPLPB201628.021002
Pan Nana, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28: 021002 doi: 10.11884/HPLPB201628.021002
|
[2] |
卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.3788/HPLPB20142605.51008
Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.3788/HPLPB20142605.51008
|
[3] |
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367
|
[4] |
Borah S, Tamuli B R, Bhanja D. Thermohydraulic performance intensification of wavy, double-layered microchannel heat sink with height tapering[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(1): 119-132. doi: 10.2514/1.T6590
|
[5] |
高智刚, 郑达文, 尚小龙, 等. 功率模块正弦微通道热沉周向传热特性分析[J]. 工程热物理学报, 2022, 43(5):1267-1275
Gao Zhigang, Zheng Dawen, Shang Xiaolong, et al. Circumferential heat transfer analysis of sinusoidal microchannel heat sink on power module[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1267-1275
|
[6] |
Li Peisheng, Hong Jian, Zhang Ying, et al. Effect of waveform channel on the cooling performance of hybrid microchannel[J]. Journal of Thermophysics and Heat Transfer, 2022, 36(3): 520-533. doi: 10.2514/1.T6399
|
[7] |
Al-Hasani H M, Freegah B. Influence of secondary flow angle and pin fin on hydro-thermal evaluation of double outlet serpentine mini-channel heat sink[J]. Results in Engineering, 2022, 16: 100670. doi: 10.1016/j.rineng.2022.100670
|
[8] |
Zeng Chen, Song Yinxi, Zhou Xiang, et al. Experimental study on heat transfer and pressure drop characteristics in a microchannel heat exchanger assembly with s-shaped fins[J]. Applied Thermal Engineering, 2022, 210: 118406. doi: 10.1016/j.applthermaleng.2022.118406
|
[9] |
Jiang Qingfeng, Pan Chongyao, Guo Ting, et al. Thermal hydraulic characteristics of trans-critical natural gas flowing through staggered S-shaped fin microchannel[J]. Cryogenics, 2022, 124: 103491. doi: 10.1016/j.cryogenics.2022.103491
|
[10] |
Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. 1991: 59-63.
|
[11] |
陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3):62-70
Chen Chaowei, Wang Xinyu, Xin Gongming. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70
|
[12] |
Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. doi: 10.1016/j.ijheatmasstransfer.2017.10.015
|
[13] |
Drummond K P, Back D, Sinanis M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. doi: 10.1016/j.ijheatmasstransfer.2018.05.127
|
[14] |
Drummond K P, Weibel J A, Garimella S V. Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119551. doi: 10.1016/j.ijheatmasstransfer.2020.119551
|
[15] |
Pan Yuhui, Zhao Rui, Nian Yongle, et al. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122052. doi: 10.1016/j.ijheatmasstransfer.2021.122052
|
[16] |
谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4):99-107
Xie Wenyuan, Lu Xiaochen, Li Long, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107
|
[17] |
毕胜山, 崔军卫, 马纶建, 等. HFE7100和HFE7500的热物理性质[J]. 化工学报, 2016, 67(5):1680-1686
Bi Shengshan, Cui Junwei, Ma Lunjian, et al. Thermophysical properties of HFE7100 and HFE7500[J]. CIESC Journal, 2016, 67(5): 1680-1686
|
[18] |
Rausch M H, Kretschmer L, Will S, et al. Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3759-3765.
|
[19] |
Agarwal S K, Raja Rao M. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3547-3557. doi: 10.1016/0017-9310(96)00039-7
|
[20] |
Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. doi: 10.1016/0017-9310(72)90054-3
|
[1] | Li Yunfei, Shi Jinfang, Qiu Rong, Yu Jian, Guo Decheng, Zhou Lei. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34(6): 061003. doi: 10.11884/HPLPB202234.220060 |
[2] | Xu Ziyuan, Wang Yueliang, Zhao Yuan'an, Shao Jianda. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31(9): 091004. doi: 10.11884/HPLPB201931.190164 |
[3] | Han Wei, Xiang Yong, Wang Fang, Zhou Lidan, Feng Bin, Li Fuquan, Zhao Junpu, Zheng Kuixing, Zhu Qihua, Wei Xiaofeng, Zheng Wanguo, Gong Mali. Measurement of Raman scattering gain coefficient in large-aperture DKDP crystals irradiated by 351 nm pulses[J]. High Power Laser and Particle Beams, 2016, 28(02): 021005. doi: 10.11884/HPLPB201628.021005 |
[4] | Wu Shenjiang, Wang Nan, Su Junhong, Xu Junqi, Ge Jinman, Liu Bin, Guo Shuling. Laser-induced damage of diamond-like carbon films with horizontal electric field[J]. High Power Laser and Particle Beams, 2015, 27(09): 092003. doi: 10.11884/HPLPB201527.092003 |
[5] | Cheng Xiufeng, Xu Mingxia, Liu Baoan, Zhang Qinghua, Zhang Jianfeng, Wang Zhengping, Sun Xun, Xu Xinguang. Properties of DKDP crystals grown at different temperature[J]. High Power Laser and Particle Beams, 2014, 26(01): 012006. doi: 10.3788/HPLPB201426.012006 |
[6] | Qiu Rong, Wang Junbo, Ren Huan, Li Xiaohong, Shi Pengcheng, Liu Hao, Ma Ping. Growth of laser-induced damage in fused silica under nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(05): 1057-1062. doi: 10.3788/HPLPB20122405.1057 |
[7] | Wu Shenjiang, Su Junhong, Shi Wei, Wang Xinmei, Xu Junqi. Laser-induced damage morphology of diamond-like carbon films with external electric field[J]. High Power Laser and Particle Beams, 2012, 24(01): 207-209. |
[8] | qiu rong, wang junbo, li xiaohong, shi pengcheng, liu hao, ma ping. Laser-induced damage on K9 surface under nanotosecond irradiation[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[9] | liu xiaofeng, li xiao, zhao yuan'an, li dawei, shao jianda, fan zhengxiu. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- . |
[10] | ling xiulan, zhao yuan, li dawei, shao jianda, fan zhengxiu. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[11] | miao xinxiang, yuan xiaodong, wang chengcheng, wang haijun, lü haibing, xiang xia, zheng wanguo. Laser induced damage in fused silica contaminated by Al film[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[12] | sun shaotao, ji lailin, wang zhengping, mu xiaoming, sun xun, xu xinguang, shi chongde. Growth and laser damage threshold of DKDP crystal grown by different methods[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[13] | hua jinrong, zu xiaotao, li li, yuan xiaodong, zheng wanguo, jiang xiaodong. Numerical simulation of laser-induced damage on rear surface of optical material[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[14] | guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, zhao song-nan, xu shi-zhen, wang bi-yi, tian dong-bin. Laser-induced damage of sol-gel silica acid and basic thin films[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- . |
[15] | miao xin-xiang, yuan xiao-dong, wang hai-jun, lü hai-bing, wang cheng-cheng, zheng wan-guo. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- . |
[16] | sun shao-tao, ji lai-lin, wang zheng-ping, liu bing, mu xiao-ming, sun xun, xu xin-guang, shi chong-de. Growth and laser damage threshold of DKDP crystal from different material[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- . |
[17] | guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, xu shi-zhen, wang bi-yi, tian dong-bin, . Comparison of laser-induced damage of monolayer ZrO2 films preparated by PVD and sol-gel methods[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- . |
[18] | yu ai-fang, fan fei-di, liu zhong-xing, zhu yong, chen chuang-tian. Effect of SiO2 barrier layer on laser induced damage threshold of second harmonic antireflection coatings on LiB3O5 crystal[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[19] | jiang xiao-dong, huang zu-xing, ren huan, peng jing, ye lin, tang can. Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- . |
[20] | gan rong-bing, lin li-bin, lu yong, liu qiang, zuo zhi-yun, jiang xiao-dong, huang zhu-xin, ye lin. Laser-induced bulk damage of UBK7 glass owing to its rear-surface defects[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- . |