Zhong Sha, He Yong, Qiu Kunzan, et al. Measurement of alkali content in Zhundong coal by LIBS method[J]. High Power Laser and Particle Beams, 2015, 27: 099002. doi: 10.11884/HPLPB201527.099002
Citation: Jiang Wentao, Zhao Rui, Cheng Wenlong. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071

Experimental and numerical study of embedded microchannel heat sink

doi: 10.11884/HPLPB202335.230071
  • Received Date: 2023-04-01
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-06-02
  • Available Online: 2023-08-09
  • Publish Date: 2023-09-15
  • To solve the heat dissipation problem of high heat flux density solid-state laser, a set of micro-compact embedded manifold S-shaped microchannel heat sink was developed using the MEMS technology and the microchannel/heat source co-design method. The heat exchanger uses continuous S-shaped microchannels and the manifold is used to form tiered and segmented flow. Experiment was conducted, using HFE-7100 as the cooling medium. Results show that the heat sink can dissipate 625 W/cm2, with a local maximum temperature of less than 100 ℃ and an average temperature rise of less than 45 ℃. Compared with the traditional manifold rectangular microchannel heat sink, the heat dissipation performance of S-shaped microchannel increased by 12%, but the flow resistance increased by about 56%. Numerical simulation methods were used to evaluate the structural parameters of the S-shaped microchannel heat sink’s heat dissipation ability and flow resistance by changing the amplitude and wavelength of the S shape according to the average temperature of the heating surface, average Nusselt number of the heat transfer surface, pressure drop, and comprehensive performance factor, to find the optimal structure design parameter combination of the S-shaped microchannel. The results show that the comprehensive performance factor of the heat sink has an optimal value under a specific S-shaped configuration, which will be used in subsequent studies.
  • [1]
    潘娜娜, 潘艳秋, 俞路, 等. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28:021002 doi: 10.11884/HPLPB201628.021002

    Pan Nana, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28: 021002 doi: 10.11884/HPLPB201628.021002
    [2]
    卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.3788/HPLPB20142605.51008

    Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.3788/HPLPB20142605.51008
    [3]
    Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367
    [4]
    Borah S, Tamuli B R, Bhanja D. Thermohydraulic performance intensification of wavy, double-layered microchannel heat sink with height tapering[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(1): 119-132. doi: 10.2514/1.T6590
    [5]
    高智刚, 郑达文, 尚小龙, 等. 功率模块正弦微通道热沉周向传热特性分析[J]. 工程热物理学报, 2022, 43(5):1267-1275

    Gao Zhigang, Zheng Dawen, Shang Xiaolong, et al. Circumferential heat transfer analysis of sinusoidal microchannel heat sink on power module[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1267-1275
    [6]
    Li Peisheng, Hong Jian, Zhang Ying, et al. Effect of waveform channel on the cooling performance of hybrid microchannel[J]. Journal of Thermophysics and Heat Transfer, 2022, 36(3): 520-533. doi: 10.2514/1.T6399
    [7]
    Al-Hasani H M, Freegah B. Influence of secondary flow angle and pin fin on hydro-thermal evaluation of double outlet serpentine mini-channel heat sink[J]. Results in Engineering, 2022, 16: 100670. doi: 10.1016/j.rineng.2022.100670
    [8]
    Zeng Chen, Song Yinxi, Zhou Xiang, et al. Experimental study on heat transfer and pressure drop characteristics in a microchannel heat exchanger assembly with s-shaped fins[J]. Applied Thermal Engineering, 2022, 210: 118406. doi: 10.1016/j.applthermaleng.2022.118406
    [9]
    Jiang Qingfeng, Pan Chongyao, Guo Ting, et al. Thermal hydraulic characteristics of trans-critical natural gas flowing through staggered S-shaped fin microchannel[J]. Cryogenics, 2022, 124: 103491. doi: 10.1016/j.cryogenics.2022.103491
    [10]
    Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. 1991: 59-63.
    [11]
    陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3):62-70

    Chen Chaowei, Wang Xinyu, Xin Gongming. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70
    [12]
    Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. doi: 10.1016/j.ijheatmasstransfer.2017.10.015
    [13]
    Drummond K P, Back D, Sinanis M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. doi: 10.1016/j.ijheatmasstransfer.2018.05.127
    [14]
    Drummond K P, Weibel J A, Garimella S V. Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119551. doi: 10.1016/j.ijheatmasstransfer.2020.119551
    [15]
    Pan Yuhui, Zhao Rui, Nian Yongle, et al. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122052. doi: 10.1016/j.ijheatmasstransfer.2021.122052
    [16]
    谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4):99-107

    Xie Wenyuan, Lu Xiaochen, Li Long, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107
    [17]
    毕胜山, 崔军卫, 马纶建, 等. HFE7100和HFE7500的热物理性质[J]. 化工学报, 2016, 67(5):1680-1686

    Bi Shengshan, Cui Junwei, Ma Lunjian, et al. Thermophysical properties of HFE7100 and HFE7500[J]. CIESC Journal, 2016, 67(5): 1680-1686
    [18]
    Rausch M H, Kretschmer L, Will S, et al. Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3759-3765.
    [19]
    Agarwal S K, Raja Rao M. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3547-3557. doi: 10.1016/0017-9310(96)00039-7
    [20]
    Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. doi: 10.1016/0017-9310(72)90054-3
  • Relative Articles

  • Cited by

    Periodical cited type(5)

    1. 姚顺春,喻子彧,徐水秀,覃淮青,蒋源,陈伟泽,卢志民. 氩气环境下煤炭的激光诱导等离子体特性研究. 工程热物理学报. 2023(11): 3140-3150 .
    2. 郝晓剑,唐慧娟,胡晓涛. 金纳米与磁场作用下LIBS检测灵敏度改善研究. 光谱学与光谱分析. 2019(05): 1599-1603 .
    3. 钱燕,钟厦,何勇,Ronald Whiddon,王智化,岑可法. 激光波长对煤激光诱导击穿光谱特性影响的试验研究. 光谱学与光谱分析. 2017(06): 1890-1895 .
    4. 王希林,洪骁,王晗,赵晨龙,陈灿,贾志东,王黎明,邹林,李锐海,王颂,王俊,揭敢新. 室温硫化硅橡胶的激光诱导击穿光谱特性与老化研究. 中国电机工程学报. 2017(10): 2774-2782 .
    5. 吴柯岩,任忠国,苏容波,刘小亮,沈洁,胡碧涛. 双飞秒激光脉冲诱导击穿光谱增强特性研究. 强激光与粒子束. 2016(08): 41-45 . 本站查看

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 72.4 %META: 72.4 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 1.2 %其他: 1.2 %Central District: 0.2 %Central District: 0.2 %China: 0.5 %China: 0.5 %Denmark: 0.2 %Denmark: 0.2 %India: 0.4 %India: 0.4 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Lebanon: 0.2 %Lebanon: 0.2 %Puylaurens: 0.2 %Puylaurens: 0.2 %United States: 0.2 %United States: 0.2 %Vienna: 0.1 %Vienna: 0.1 %[]: 3.3 %[]: 3.3 %上海: 1.5 %上海: 1.5 %东京: 0.1 %东京: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %光州广域: 0.1 %光州广域: 0.1 %兰州: 0.2 %兰州: 0.2 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 19.2 %北京: 19.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南昌: 0.1 %南昌: 0.1 %卡尔帕卡姆: 0.3 %卡尔帕卡姆: 0.3 %台州: 0.1 %台州: 0.1 %合肥: 0.7 %合肥: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.5 %大庆: 0.5 %天津: 0.5 %天津: 0.5 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.3 %宣城: 0.3 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 1.3 %张家口: 1.3 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %斯特拉斯堡: 0.5 %斯特拉斯堡: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.2 %普林斯顿: 0.2 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 1.5 %漯河: 1.5 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 12.0 %芒廷维尤: 12.0 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %茨城: 0.2 %茨城: 0.2 %莫吉奥: 0.4 %莫吉奥: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 37.9 %西宁: 37.9 %西安: 0.7 %西安: 0.7 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阿布奎基: 0.1 %阿布奎基: 0.1 %隆格瑞莫: 0.2 %隆格瑞莫: 0.2 %马斯喀特: 0.2 %马斯喀特: 0.2 %黎巴嫩: 0.3 %黎巴嫩: 0.3 %其他其他Central DistrictChinaDenmarkIndiaIran (ISLAMIC Republic Of)Korea Republic ofLebanonPuylaurensUnited StatesVienna[]上海东京东莞中卫中山临汾丹东佛山光州广域兰州凤凰城加利福尼亚州北京十堰南京南昌卡尔帕卡姆台州合肥哈尔滨哥伦布嘉兴大庆天津宜宾宣城常州广州张家口成都扬州斯特拉斯堡无锡昆明晋城普林斯顿普洱朝阳杭州桃园武汉深圳温州湖州漯河潍坊石家庄秦皇岛纽瓦克绍兴芒廷维尤芝加哥苏州茨城莫吉奥衡阳衢州西宁西安达州运城连云港邯郸郑州鄂州重庆长沙长治阿布奎基隆格瑞莫马斯喀特黎巴嫩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (1033) PDF downloads(161) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return