Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
Citation: Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073

High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation

doi: 10.11884/HPLPB202335.230073
  • Received Date: 2023-04-02
  • Accepted Date: 2023-10-15
  • Rev Recd Date: 2023-10-15
  • Available Online: 2023-10-18
  • Publish Date: 2023-11-11
  • The single emitter and bars of 780 nm semiconductor laser have been designed and fabricated. The epitaxial layers were prepared by the metal organic chemical vapor deposition technology. GaAsP and GaInP were used as the quantum well and waveguide layer, respectively. The confinement layers were AlGaInP material with low refractive index. The bandgap between the quantum well and the waveguide layer was 0.15 eV, while the bandgap between the waveguide layer and the confinement layer was 0.28 eV. The high bandgap was effective in suppressing carrier leakage. The 1.55 μm thick large optical cavity epitaxy structure increases the beam’s size and alleviates the cavity optical surface damage problem. The asymmetric structure suppresses high-order fast axis modes. Using the ultra-high vacuum cleavage and passivation technology, an amorphous ZnSe passivation layer was deposited on the laser cavity facets. The ZnSe passivated single emitter device with 150 μm width and 4 mm cavity length, did not show COD phenomenon with 16.3 W continuous-wave output, when the current was 15 A. In this case, the slope efficiency reached 1.27 W/A while the electro-optic conversion efficiency was 58%, and the divergence angle of slow-axis was 9.9° and the spectral width was 1.81 nm. The 1-cm laser bar with lateral emitter fill factor of 40%, reached continuous-wave 180 W output power at 192 A, and the electro-optic conversion efficiency was 50.7%, the spectral width was 2.2 nm.
  • [1]
    Keaveney J, Hamlyn W J, Adams C S, et al. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz[J]. Review of Scientific Instruments, 2016, 87: 095111. doi: 10.1063/1.4963230
    [2]
    Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92. doi: 10.1109/JSTQE.2008.2010719
    [3]
    Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[C]//Proceedings of the SPIE 8241, High-Power Diode Laser Technology and Applications X. 2012: 82410Q.
    [4]
    Hübner M, Wilkens M, Eppich B, et al. A 1.4kW 780nm pulsed diode laser, high duty cycle, passively side-cooled pump module[J]. Optics Express, 2021, 29(7): 9749-9757. doi: 10.1364/OE.416527
    [5]
    Crump P, Wilkens M, Hübner M, et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126204.
    [6]
    Kissel H, Tomm J W, Köhler B, et al. Impact of external optical feedback on high-power diode laser lifetime and failure modes[C]//Proceedings of the SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000S.
    [7]
    Christopher H, Kovalchuk E V, Wenzel H, et al. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780nm[J]. Applied Optics, 2017, 56(19): 5566-5572. doi: 10.1364/AO.56.005566
    [8]
    Al-Jabr A A, Majid M A, Alias M S, et al. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing[J]. Journal of Applied Physics, 2016, 119: 135703. doi: 10.1063/1.4945104
    [9]
    Michaud J, Vecchio P D, BéchouL, et al. Precise facet temperature distribution of high-power laser diodes: unpumped window effect[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1002-1005. doi: 10.1109/LPT.2015.2405090
    [10]
    Bao L, Wang J, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]//Proceedings of the SPIE 7953, Novel In-Plane Semiconductor Lasers X. 2011: 79531B.
    [11]
    Liu G L, Lehkonen S, Li J W, et al. High power and reliable 793nm T-bar and single emitter for thulium-doped fiber laser pumping[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126208.
    [12]
    Hu H M, Zhao Jianyang, Wang Weimin, et al. 12 W high power InGaAsP/AlGaInP 755 nm quantum well laser[J]. Chinese Optics Letters, 2019, 17: 061403. doi: 10.3788/COL201917.061403
    [13]
    何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33:091001 doi: 10.11884/HPLPB202133.210099

    He Lin'an, ZhouKun, ZhangLiang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001 doi: 10.11884/HPLPB202133.210099
    [14]
    Wang Bangguo, Zhou Li, Tan Shaoyang, et al. 71% wall-plug efficiency from 780 nm-emitting laser diode with GaAsP quantum well[J]. Optics & Laser Technology, 2024, 168: 109867.
    [15]
    Arslan S, MaaßdorfA, Martin D, et al. Progress in high power diode laser pumps for high-energy class mid infra-red lasers[C]//2021 IEEE Photonics Conference (IPC). 2021: 1-2.
    [16]
    Boschker J E, Spengler U, Ressel P, et al. Stability of ZnSe-passivated laser facets cleaved in air and in ultra-high vacuum[J]. IEEE Photonics Journal, 2022, 14: 1531606.
  • Relative Articles

    [1]Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421
    [2]Xi Xiaoming, Yang Baolai, Zhang Hanwei, Pan Zhiyong, Huang Liangjin, Wang Peng, Yang Huan, Shi Chen, Yan Zhiping, Chen Zilun, Wang Xiaolin, Han Kai, Wang Zefeng, Zhou Pu, Xu Xiaojun. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35(2): 021001. doi: 10.11884/HPLPB202335.220424
    [3]Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35(9): 091008. doi: 10.11884/HPLPB202335.230127
    [4]Liu Chang. High power and high-efficiency miniaturized power amplifier with compact microstrip resonant cell[J]. High Power Laser and Particle Beams, 2023, 35(10): 103001. doi: 10.11884/HPLPB202335.230192
    [5]Yang Zining, Wang Rui, Liu Qingshan, Sun Jianyong, Yuan Maohui, Yang Weiqiang, Hua Weihong, Han Kai, Wang Hongyan, Xu Xiaojun. Demonstration of a diode pumped metastable argon laser in a plasma jet[J]. High Power Laser and Particle Beams, 2022, 34(2): 021001. doi: 10.11884/HPLPB202234.220012
    [6]Ma Xiaoyu, Zhang Naling, Zhong Li, Liu Suping, Jing Hongqi. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32(12): 121010. doi: 10.11884/HPLPB202032.200236
    [7]Li Wei, Wu Lingyuan, Wang Weiping, Zhang Jialei, Liu Guodong, Zhang Dayong. Power conversion efficiency of photovoltaic cells in semiconductor laser wireless power transmission[J]. High Power Laser and Particle Beams, 2018, 30(11): 119001. doi: 10.11884/HPLPB201830.180097
    [8]Tan Weibing, Cao Yibing, Song Wei, Chen Changhua, Li Xiaoze, Zhang Ligang, Zhu Xiaoxin. A Ku band high efficiency coaxial relativistic backwardwave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2016, 28(09): 093002. doi: 10.11884/HPLPB201628.151098
    [9]Yu Junhong, Guo Linhui, Tan Hao, Meng Huicheng, Gao Songxin, Wu Deyong. Feedback efficiency for diode laser wavelength stabilization system[J]. High Power Laser and Particle Beams, 2015, 27(04): 041014. doi: 10.11884/HPLPB201527.041014
    [10]Liang Qinjin, Chen Shitao, Yu Chuan. Development of 1.2 kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26(10): 103002. doi: 10.11884/HPLPB201426.103002
    [11]Wang Tao, Du Tuanjie, Wu Fengtie. Laser diode pumped Nd:YVO4 laser generating quasi-non-diffracting green beam by passive axicon[J]. High Power Laser and Particle Beams, 2014, 26(01): 011007. doi: 10.3788/HPLPB201426.011007
    [12]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin, Liu Shiming, Zhao Zhilong, Huang Wei. Gratings' rotation angle tolerance for diode lasers with external cavity formed by volume Bragg grating[J]. High Power Laser and Particle Beams, 2013, 25(02): 310-314. doi: 10.3788/HPLPB20132502.0310
    [13]Yin Zhiyong, Wang Yuefeng, Yin Shaoyun, Du Chunlei, Jia Wenwu, Wang Junzhen, Bai Huijun. Impact of microlens changes on the homogenization effect of semiconductor laser beam[J]. High Power Laser and Particle Beams, 2013, 25(10): 2556-2560. doi: 10.3788/HPLPB20132510.2556
    [14]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin. Laser doide array with narrow linewidth for rubidium vapor laser pumping[J]. High Power Laser and Particle Beams, 2013, 25(04): 875-878.
    [15]Zhang Xuehui, Jiang Menghua, Liu Bin, Hui Yongling, Lei Hong, Li Qiang. High efficiency Nd:YVO4/LBO critical phase matching green laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2831-2835. doi: 10.3788/HPLPB20132511.2831
    [16]guo ruhai, shi kui, wang hengkun, wang bing. Damage in optical components induced by high power semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- .
    [17]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [18]he hu. Analysis of L-band high-efficiency gap-current magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [19]feng zhen-zhong, chen jian-guo, yan di-yong, zhang jing. Theory analysis of cross-injection locking of two diode lasers[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
    [20]yao zhen yu, l bai da, tu bo, jiang jian feng, tong li xin, wu de yong, gao qing song, chen xiao lin. 100W diodepumped Nd:YAG disk laser[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 64.3 %META: 64.3 %PDF: 11.6 %PDF: 11.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 1.4 %其他: 1.4 %Austin: 0.6 %Austin: 0.6 %China: 0.1 %China: 0.1 %Gangseo-gu: 0.4 %Gangseo-gu: 0.4 %Gwynn Oak: 0.6 %Gwynn Oak: 0.6 %Lithonia: 0.1 %Lithonia: 0.1 %Osaka: 0.1 %Osaka: 0.1 %Taichung: 1.0 %Taichung: 1.0 %United States: 0.1 %United States: 0.1 %Wixom: 0.3 %Wixom: 0.3 %[]: 0.4 %[]: 0.4 %上海: 0.6 %上海: 0.6 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %保定: 0.2 %保定: 0.2 %克莱姆森: 0.3 %克莱姆森: 0.3 %凤凰城: 0.1 %凤凰城: 0.1 %列克星敦: 0.4 %列克星敦: 0.4 %北京: 4.7 %北京: 4.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %台北: 0.7 %台北: 0.7 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.6 %呼和浩特: 0.6 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.3 %圣何塞: 0.3 %圣彼得堡: 1.5 %圣彼得堡: 1.5 %坦佩: 0.3 %坦佩: 0.3 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 0.2 %太原: 0.2 %安德森: 0.3 %安德森: 0.3 %官坑: 0.3 %官坑: 0.3 %密蘇里城: 0.6 %密蘇里城: 0.6 %川崎: 0.4 %川崎: 0.4 %巴利亚多利德: 0.1 %巴利亚多利德: 0.1 %布加勒斯特: 0.3 %布加勒斯特: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 0.5 %广州: 0.5 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.9 %张家口: 0.9 %徐州: 0.6 %徐州: 0.6 %惠州: 0.1 %惠州: 0.1 %意法半: 0.1 %意法半: 0.1 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %扬斯敦: 0.3 %扬斯敦: 0.3 %昆明: 0.9 %昆明: 0.9 %晋城: 0.2 %晋城: 0.2 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 1.2 %武汉: 1.2 %沈阳: 0.1 %沈阳: 0.1 %法拉盛: 0.3 %法拉盛: 0.3 %波士顿: 0.6 %波士顿: 0.6 %洛杉矶: 0.3 %洛杉矶: 0.3 %济南: 0.4 %济南: 0.4 %深圳: 0.9 %深圳: 0.9 %渥太华: 0.6 %渥太华: 0.6 %温州: 0.4 %温州: 0.4 %湖州: 0.2 %湖州: 0.2 %漯河: 1.1 %漯河: 1.1 %潍坊: 0.5 %潍坊: 0.5 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 34.1 %芒廷维尤: 34.1 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 1.0 %苏州: 1.0 %莫斯科: 0.3 %莫斯科: 0.3 %衡水: 0.2 %衡水: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 4.9 %西宁: 4.9 %西安: 1.0 %西安: 1.0 %诺沃克: 2.7 %诺沃克: 2.7 %贵阳: 0.8 %贵阳: 0.8 %运城: 0.9 %运城: 0.9 %连云港: 0.1 %连云港: 0.1 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.3 %重庆: 0.3 %长春: 2.5 %长春: 2.5 %长沙: 1.1 %长沙: 1.1 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.1 %马鞍山: 0.1 %麦加: 0.1 %麦加: 0.1 %麦迪逊: 0.1 %麦迪逊: 0.1 %黄冈: 1.2 %黄冈: 1.2 %其他其他AustinChinaGangseo-guGwynn OakLithoniaOsakaTaichungUnited StatesWixom[]上海东莞临汾丹东伊利诺伊州保定克莱姆森凤凰城列克星敦北京十堰南京台北台州合肥吉林呼和浩特哈尔滨哥伦布唐山嘉兴圣何塞圣彼得堡坦佩大连天津太原安德森官坑密蘇里城川崎巴利亚多利德布加勒斯特常州常德广州廊坊张家口徐州惠州意法半慕尼黑成都扬州扬斯敦昆明晋城杭州格兰特县武汉沈阳法拉盛波士顿洛杉矶济南深圳渥太华温州湖州漯河潍坊烟台班加罗尔石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科衡水衢州襄阳西宁西安诺沃克贵阳运城连云港遵义邯郸郑州鄂州重庆长春长沙青岛马鞍山麦加麦迪逊黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (676) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return