Qing Chun, Wu Xiaoqing, Li Xuebin, et al. Forecast upper air optical turbulence based on weather research and forecasting model[J]. High Power Laser and Particle Beams, 2015, 27: 061009. doi: 10.11884/HPLPB201527.061009
Citation: Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073

High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation

doi: 10.11884/HPLPB202335.230073
  • Received Date: 2023-04-02
  • Accepted Date: 2023-10-15
  • Rev Recd Date: 2023-10-15
  • Available Online: 2023-10-18
  • Publish Date: 2023-11-11
  • The single emitter and bars of 780 nm semiconductor laser have been designed and fabricated. The epitaxial layers were prepared by the metal organic chemical vapor deposition technology. GaAsP and GaInP were used as the quantum well and waveguide layer, respectively. The confinement layers were AlGaInP material with low refractive index. The bandgap between the quantum well and the waveguide layer was 0.15 eV, while the bandgap between the waveguide layer and the confinement layer was 0.28 eV. The high bandgap was effective in suppressing carrier leakage. The 1.55 μm thick large optical cavity epitaxy structure increases the beam’s size and alleviates the cavity optical surface damage problem. The asymmetric structure suppresses high-order fast axis modes. Using the ultra-high vacuum cleavage and passivation technology, an amorphous ZnSe passivation layer was deposited on the laser cavity facets. The ZnSe passivated single emitter device with 150 μm width and 4 mm cavity length, did not show COD phenomenon with 16.3 W continuous-wave output, when the current was 15 A. In this case, the slope efficiency reached 1.27 W/A while the electro-optic conversion efficiency was 58%, and the divergence angle of slow-axis was 9.9° and the spectral width was 1.81 nm. The 1-cm laser bar with lateral emitter fill factor of 40%, reached continuous-wave 180 W output power at 192 A, and the electro-optic conversion efficiency was 50.7%, the spectral width was 2.2 nm.
  • [1]
    Keaveney J, Hamlyn W J, Adams C S, et al. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz[J]. Review of Scientific Instruments, 2016, 87: 095111. doi: 10.1063/1.4963230
    [2]
    Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92. doi: 10.1109/JSTQE.2008.2010719
    [3]
    Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[C]//Proceedings of the SPIE 8241, High-Power Diode Laser Technology and Applications X. 2012: 82410Q.
    [4]
    Hübner M, Wilkens M, Eppich B, et al. A 1.4kW 780nm pulsed diode laser, high duty cycle, passively side-cooled pump module[J]. Optics Express, 2021, 29(7): 9749-9757. doi: 10.1364/OE.416527
    [5]
    Crump P, Wilkens M, Hübner M, et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126204.
    [6]
    Kissel H, Tomm J W, Köhler B, et al. Impact of external optical feedback on high-power diode laser lifetime and failure modes[C]//Proceedings of the SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000S.
    [7]
    Christopher H, Kovalchuk E V, Wenzel H, et al. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780nm[J]. Applied Optics, 2017, 56(19): 5566-5572. doi: 10.1364/AO.56.005566
    [8]
    Al-Jabr A A, Majid M A, Alias M S, et al. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing[J]. Journal of Applied Physics, 2016, 119: 135703. doi: 10.1063/1.4945104
    [9]
    Michaud J, Vecchio P D, BéchouL, et al. Precise facet temperature distribution of high-power laser diodes: unpumped window effect[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1002-1005. doi: 10.1109/LPT.2015.2405090
    [10]
    Bao L, Wang J, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]//Proceedings of the SPIE 7953, Novel In-Plane Semiconductor Lasers X. 2011: 79531B.
    [11]
    Liu G L, Lehkonen S, Li J W, et al. High power and reliable 793nm T-bar and single emitter for thulium-doped fiber laser pumping[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126208.
    [12]
    Hu H M, Zhao Jianyang, Wang Weimin, et al. 12 W high power InGaAsP/AlGaInP 755 nm quantum well laser[J]. Chinese Optics Letters, 2019, 17: 061403. doi: 10.3788/COL201917.061403
    [13]
    何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33:091001 doi: 10.11884/HPLPB202133.210099

    He Lin'an, ZhouKun, ZhangLiang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001 doi: 10.11884/HPLPB202133.210099
    [14]
    Wang Bangguo, Zhou Li, Tan Shaoyang, et al. 71% wall-plug efficiency from 780 nm-emitting laser diode with GaAsP quantum well[J]. Optics & Laser Technology, 2024, 168: 109867.
    [15]
    Arslan S, MaaßdorfA, Martin D, et al. Progress in high power diode laser pumps for high-energy class mid infra-red lasers[C]//2021 IEEE Photonics Conference (IPC). 2021: 1-2.
    [16]
    Boschker J E, Spengler U, Ressel P, et al. Stability of ZnSe-passivated laser facets cleaved in air and in ultra-high vacuum[J]. IEEE Photonics Journal, 2022, 14: 1531606.
  • Relative Articles

    [1]Xu Rui, Wang Bangji, Liu Qingxiang, Wang Dong, Weng Hong. Position process control system of miniature brushless DC motor[J]. High Power Laser and Particle Beams, 2022, 34(4): 043001. doi: 10.11884/HPLPB202234.210162
    [2]Zhou Lei, Wang Bangji, Liu Qingxiang, Li Xiangqiang, Zhang Jianqiong. Multi-axis DC motor controller for phased array antenna applications implemented on FPGA[J]. High Power Laser and Particle Beams, 2018, 30(1): 013001. doi: 10.11884/HPLPB201830.170188
    [3]Zhang Hongwei, Liu Chaoyang, Yu Zhihua, Liu Honghua. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30(7): 073008. doi: 10.11884/HPLPB201830.170531
    [4]Chen Gang, Wen Chunmei, Li Yuhui. Calibration and installation of a permanent magnet phase shifter based on nonlinear parameter estimation[J]. High Power Laser and Particle Beams, 2018, 30(12): 125106. doi: 10.11884/HPLPB201830.180205
    [5]Huang Zijiang, He Hengxiang, Jiang Zhongming, Liu Pan, Zhang Qiang, Huang Kai. Design of high-precision timing control system in combined pulse laser[J]. High Power Laser and Particle Beams, 2016, 28(12): 125005. doi: 10.11884/HPLPB201628.160157
    [6]Wan Rongxin, Li Xiangqiang, Liu Qingxiang, Wang Bangji, Zhou Lei. Design of IP core for DC micromotor controller based on FPGA[J]. High Power Laser and Particle Beams, 2016, 28(03): 033011. doi: 10.11884/HPLPB201628.033011
    [7]Deng Guangjian, Huang Wenhua, Li Jiawei, Shao Hao, Ba Tao, Zhang Zhiqiang. High power ferrite phase shifter based on structure of waveguide in parallel[J]. High Power Laser and Particle Beams, 2016, 28(08): 083006. doi: 10.11884/HPLPB201628.151095
    [8]Yan Fabao, Su Yanrui, Yang Hong, Liu Jianxin. High-precision optical platform focusing control system[J]. High Power Laser and Particle Beams, 2015, 27(09): 091009. doi: 10.11884/HPLPB201527.091009
    [9]Zhang Dewei, Li Wenchao, Zhou Dongfang, Wang Yongfei, Deng Hailin. Design of Ka-band reflection-type analog electrically controlled phase shifter[J]. High Power Laser and Particle Beams, 2015, 27(05): 053001. doi: 10.11884/HPLPB201527.053001
    [10]Li Guohui, Yang Yuan, He Zhongwu, Xiang Rujian, Wu Jing, Xu Honglai, Yan Hong, Lu Fei, Hu Ping. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26(03): 031009. doi: 10.3788/HPLPB201426.031009
    [11]Ma Jun, Wang Honggang, Du Guangxing, Qian Baoliang. Preliminary design of TM11-TE10 mode converter in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063004. doi: 10.11884/HPLPB201426.063004
    [12]Zhou Yifei, Liu Qingxiang, Li Xiangqiang, Wang Bangji, Zhou Lei, Li Wei. Simulation of helical antenna stepper motor control system and optimization of running curve[J]. High Power Laser and Particle Beams, 2014, 26(06): 063020. doi: 10.11884/HPLPB201426.063020
    [13]Du Kai, Li Guo, Tong Weichao, Huang Yanhua, Tang Yongjian. Accuracy control of capsule micro holes in fast ignition based on single point diamond turning[J]. High Power Laser and Particle Beams, 2013, 25(12): 3225-3229. doi: 3225
    [14]Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290
    [15]lu hui, zhang lijun, zheng zhanqi, zhang yiheng, leng yongqing, liao xianhua. Fiber-based vector-sum microwave photonic phase shifter[J]. High Power Laser and Particle Beams, 2011, 23(12): 12-13.
    [16]li xiao, sun hong, qiu yingwei, shen sirong, tang jingyu. Digital RF phase control loop at rapid cycling synchrotron of China spallation neutron source[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [17]wang bangji, liu qingxiang, zhang zhengquan, li xiangqiang, zhang jianqiong. Design of motor control system for mechanical phased array antenna[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [18]zhou lei, liu qingxiang, li xiangqiang, wang bangji, yu yi, zhang jianqiong, zhang yanrong, li hanbing. Design of stepping motor control IP core for array antenna successive scanning[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 77.1 %META: 77.1 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 1.1 %其他: 1.1 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %European Union: 0.2 %European Union: 0.2 %France: 0.2 %France: 0.2 %India: 0.1 %India: 0.1 %Malaysia: 0.3 %Malaysia: 0.3 %Russian Federation: 0.1 %Russian Federation: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.6 %United States: 0.6 %[]: 1.1 %[]: 1.1 %三明: 0.1 %三明: 0.1 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %兰州: 0.1 %兰州: 0.1 %内江: 0.2 %内江: 0.2 %北京: 10.1 %北京: 10.1 %南京: 0.2 %南京: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.4 %台州: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.2 %哈密: 0.2 %哈尔科夫: 0.5 %哈尔科夫: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %威海: 0.2 %威海: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.2 %宿迁: 0.2 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴黎: 0.2 %巴黎: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.1 %扬州: 0.1 %新乡: 0.7 %新乡: 0.7 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %格兰特县: 0.2 %格兰特县: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.8 %湖州: 0.8 %漯河: 0.4 %漯河: 0.4 %澳门: 0.1 %澳门: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 39.3 %西宁: 39.3 %西安: 0.4 %西安: 0.4 %西雅图: 0.1 %西雅图: 0.1 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.1 %郑州: 2.1 %都柏林: 0.2 %都柏林: 0.2 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.3 %铜陵: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %其他其他Central DistrictChinaEuropean UnionFranceIndiaMalaysiaRussian FederationUnited KingdomUnited States[]三明上海中山临汾丹东丽水伊利诺伊州兰州内江北京南京台北台州呼和浩特咸阳哈密哈尔科夫哥伦布嘉兴大连天津威海安康宣城宿迁崇左巴中巴黎常州平顶山广州张家口张家界成都扬州新乡晋城普洱杭州格兰特县桃园武汉沈阳淮安深圳温州湖州漯河澳门玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图贵港贵阳运城连云港邯郸郑州都柏林重庆铜陵长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (670) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return