Citation: | Han Yutao, Li Renkai, Wan Weishi. Measurement of transverse phase space based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35: 114005. doi: 10.11884/HPLPB202335.230074 |
[1] |
赵振堂. 先进X射线光源加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2020: 164-165
Zhao Zhentang. Principles and key technologies of advanced X-ray light source accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 164-165
|
[2] |
Gordon M, Li W H, Andorf M B, et al. Four-dimensional emittance measurements of ultrafast electron diffraction optics corrected up to sextupole order[J]. Physical Review Accelerators and Beams, 2022, 25: 084001. doi: 10.1103/PhysRevAccelBeams.25.084001
|
[3] |
Feist A, Bach N, Rubiano da Silva N, et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam[J]. Ultramicroscopy, 2017, 176: 63-73. doi: 10.1016/j.ultramic.2016.12.005
|
[4] |
杜应超, 黄文会, 唐传祥, 等. 汤姆逊散射X射线源初步实验中电子束参数测量及其对X射线性能影响的研究[J]. 高能物理与核物理, 2006, 30(s1):84-86 doi: 10.3321/j.issn:0254-3052.2006.z1.027
Du Yingchao, Huang Wenhui, Tang Chuanxiang, et al. Preliminary experiments of Thomson scattering X-ray source: measurements of electron beam’s parameters and their influence on the X-ray performance[J]. High Energy Physics and Nuclear Physics, 2006, 30(s1): 84-86 doi: 10.3321/j.issn:0254-3052.2006.z1.027
|
[5] |
Brown W J, Anderson S G, Barty C P J, et al. Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis[J]. Physical Review Accelerators and Beams, 2004, 7: 060702. doi: 10.1103/PhysRevSTAB.7.060702
|
[6] |
Nagaitsev S, Huang Z, Power J, et al. Accelerator and beam physics research goals and opportunities[R]. FERMILAB-FN-1123, 2021.
|
[7] |
Behrens C, Decker F J, Ding Y, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers[J]. Nature Communications, 2014, 5: 3762. doi: 10.1038/ncomms4762
|
[8] |
Rao Y N, Baartman R. Transverse phase space tomography in TRIUMf injection beamline[C]//Proceedings of IPAC2011. 2011.
|
[9] |
Yu Qinglin, Gu Duan, Zhang Meng, et al. Transverse phase space reconstruction study in Shanghai soft X-ray FEL facility[J]. Nuclear Science and Techniques, 2018, 29: 9. doi: 10.1007/s41365-017-0338-0
|
[10] |
McKee C B, O’Shea P G, Madey J M J. Phase space tomography of relativistic electron beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 358(1/3): 264-267.
|
[11] |
Hermann B, Guzenko V A, Hürzeler O R, et al. Electron beam transverse phase space tomography using nanofabricated wire scanners with submicrometer resolution[J]. Physical Review Accelerators and Beams, 2021, 24: 022802. doi: 10.1103/PhysRevAccelBeams.24.022802
|
[12] |
杜应超, 向导, 黄文会, 等. 基于CT算法的束团横向相空间测量[J]. 高能物理与核物理, 2006, 30(9):888-891 doi: 10.3321/j.issn:0254-3052.2006.09.015
Du Yingchao, Xiang Dao, Huang Wenhui, et al. Transverse phase space measurement based on computerized tomography[J]. High Energy Physics and Nuclear Physics, 2006, 30(9): 888-891 doi: 10.3321/j.issn:0254-3052.2006.09.015
|
[13] |
Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 546-552. doi: 10.1137/0143035
|
[14] |
Romanov A. Beam phase space tomography at fast electron linac at Fermilab[R]. FERMILAB-CONF-18-321-AD, 2018.
|
[15] |
Stratakis D, Kishek R A, Li H, et al. Tomography as a diagnostic tool for phase space mapping of intense particle beams[J]. Physical Review Accelerators and Beams, 2006, 9: 112801. doi: 10.1103/PhysRevSTAB.9.112801
|
[16] |
Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. doi: 10.1177/016173468400600107
|
[17] |
Hock K M, Ibison M G. A study of the maximum entropy technique for phase space tomography[J]. Journal of Instrumentation, 2013, 8: P02003. doi: 10.1088/1748-0221/8/02/P02003
|
[18] |
Scheinker A, Cropp F, Paiagua S, et al. Adaptive deep learning for time-varying systems with hidden parameters: predicting changing input beam distributions of compact particle accelerators[J]. 2021.doi: 10.21203/rs.3.rs-373311/v1.
|
[19] |
Wang Minwen, Wang Zhongming, Wang Di, et al. Four-dimensional phase space measurement using multiple two-dimensional profiles[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 943: 162438.
|
[20] |
Hock K M, Ibison M G, Holder D J, et al. Beam tomography in transverse normalised phase space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 642(1): 36-44.
|
[21] |
于清林. 束团横向相空间重建技术研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018
Yu Qinglin. Study on beam transverse phase space reconstruction technology[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2018
|
[22] |
Wang Ge, Ye J C, De Man B. Deep learning for tomographic image reconstruction[J]. Nature Machine Intelligence, 2020, 2(12): 737-748. doi: 10.1038/s42256-020-00273-z
|
[23] |
Wolski A, Johnson M A, King M, et al. Transverse phase space tomography in an accelerator test facility using image compression and machine learning[J]. Physical Review Accelerators and Beams, 2022, 25: 122803. doi: 10.1103/PhysRevAccelBeams.25.122803
|
[24] |
Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten[J]. Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig. Journal of Mathematical Physics, 1917, 69: 262-277.
|
[25] |
Hounsfield G N. Computerized transverse axial scanning (tomography): Part 1. Description of system[J]. The British Journal of Radiology, 1973, 46(552): 1016-1022. doi: 10.1259/0007-1285-46-552-1016
|
[26] |
Sander O R, Minerbo G N, Jameson R A, et al. Beam tomography in two and four dimensions [100 MeV H+/ beams and 750 keV H− beams][R]. LA-UR-79-2540; CONF-790927-20, 1979: 6.
|
[27] |
Lee D, Choi S, Kim H J. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains[J]. Medical Physics, 2019, 46(1): 104-115. doi: 10.1002/mp.13258
|
[28] |
刘勇. 插值技术及其在CT重建中的应用[D]. 天津: 天津职业技术师范大学, 2022
Liu Yong. Interpolation technology and its application in CT reconstruction[D]. Tianjin: Tianjin University of Technology and Education, 2022
|
[29] |
Kalke M, Siltanen S. Sinogram interpolation method for sparse-angle tomography[J]. Applied Mathematics, 2014, 5(3): 423-441. doi: 10.4236/am.2014.53043
|
[30] |
Han Y S, Yoo J, Ye J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[DB/OL]. arXiv preprint arXiv: 1611.06391, 2016.
|
[31] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015.
|
[32] |
Yu Yang, Gong Zhiqiang, Zhong Ping, et al. Unsupervised representation learning with deep convolutional neural network for remote sensing images[C]//Proceedings of the 9th International Conference on Image and Graphics. 2017.
|
[33] |
Chen Hu, Zhang Yi, Kalra M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. doi: 10.1109/TMI.2017.2715284
|
[34] |
Xiang Dao, Du Yingchao, Yan Lixin, et al. Transverse phase space tomography using a solenoid applied to a thermal emittance measurement[J]. Physical Review Accelerators and Beams, 2009, 12: 022801. doi: 10.1103/PhysRevSTAB.12.022801
|
[35] |
Roussel R, Edelen A, Mayes C, et al. Phase space reconstruction from accelerator beam measurements using neural networks and differentiable simulations[DB/OL]. arXiv preprint arXiv: 2209.04505, 2023.
|
[36] |
ASTRA. Klaus floettmann DESY[CP/OL]. Hamburg, Germany: DESY, 2017. https://www.desy.de/~mpyflo/.
|
[37] |
Gupta L. Measured Data set[Z/OL]. V1. Harvard Dataverse, 2021. https://doi.org/10.7910/DVN/MVE1YC.
|
[38] |
Hock K M, Wolski A. Tomographic reconstruction of the full 4D transverse phase space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 726: 8-16.
|
[39] |
杜应超. 基于CT算法的高亮度电子束六维相空间分布的测量研究[R]. 2011: 8
Du Yingchao. Measurement of six dimensional phase space distribution of high brightness electron beam based on CT algorithm[R]. 2011: 8
|