Citation: | Wang Yancheng, Cao Zongwei, Sun Xiangyang, et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079 |
[1] |
Kailas S, Hemalatha M, Saxena A. Nuclear transmutation strategies for management of long-lived fission products[J]. Pramana, 2015, 85(3): 517-523. doi: 10.1007/s12043-015-1063-z
|
[2] |
Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
|
[3] |
Nakamura S, Furutaka K, Wada H, et al. Measurement of the thermal neutron capture cross section and the resonance integral of the 90Sr(n, γ)91Sr reaction[J]. Journal of Nuclear Science and Technology, 2001, 38(12): 1029-1034. doi: 10.1080/18811248.2001.9715132
|
[4] |
Sadighi S K, Sadighi-Bonabi R. The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultrantense lasers[J]. Laser and Particle Beams, 2010, 28(2): 269-276. doi: 10.1017/S0263034610000145
|
[5] |
Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
|
[6] |
Mourou G, Umstadter D. Development and applications of compact high-intensity lasers[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 2315-2325. doi: 10.1063/1.860202
|
[7] |
Amiranoff F, Baton S, Bernard D, et al. Observation of laser wakefield acceleration of electrons[J]. Physical Review Letters, 1998, 81(5): 995-998. doi: 10.1103/PhysRevLett.81.995
|
[8] |
Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
|
[9] |
Shkolnikov P L, Kaplan A E, Pukhov A, et al. Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser[J]. Applied Physics Letters, 1997, 71(24): 3471-3473. doi: 10.1063/1.120362
|
[10] |
Magill J, Schwoerer H, Ewald F, et al. Laser transmutation of iodine-129[J]. Applied Physics B, 2003, 77(4): 387-390. doi: 10.1007/s00340-003-1306-4
|
[11] |
Ledingham K W D, Magill J, McKenna P, et al. Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product[J]. Journal of Physics D: Applied Physics, 2003, 36(18): L79-L82. doi: 10.1088/0022-3727/36/18/L01
|
[12] |
Tajima T, Dawson J M. An electron accelerator using a laser[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 4188-4189. doi: 10.1109/TNS.1979.4330739
|
[13] |
Malka V, Fritzler S, Lefebvre E, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298(5598): 1596-1600. doi: 10.1126/science.1076782
|
[14] |
Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541. doi: 10.1038/nature02900
|
[15] |
Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
|
[16] |
Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
|
[17] |
Wang X L, Xu Z Y, Luo W, et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator[J]. Physics of Plasmas, 2017, 24: 093105. doi: 10.1063/1.4998470
|
[18] |
Kim H T, Pathak V B, Hojbota C I, et al Multi-GeV laser wakefield electron acceleration with PW lasers[J]. Applied Sciences, 2021, 11: 5831.
|
[19] |
Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
|
[20] |
Hosokai T, Kinoshita K, Zhidkov A, et al. Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration[J]. Physical Review Letters, 2006, 97: 075004. doi: 10.1103/PhysRevLett.97.075004
|
[21] |
Hur M S, Gupta D N, Suk H. Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration[J]. Physics Letters A, 2008, 372(15): 2684-2687. doi: 10.1016/j.physleta.2007.12.045
|
[22] |
Vieira J, Martins S F, Pathak V B, et al. Magnetic control of particle injection in plasma based accelerators[J]. Physical Review Letters, 2011, 106: 225001. doi: 10.1103/PhysRevLett.106.225001
|
[23] |
Liu Hong, He Xiantu, Chen S G. Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields[J]. Physical Review E, 2004, 69: 066409. doi: 10.1103/PhysRevE.69.066409
|