Zhang Fan, Huang Xiuguang, Shu Hua, et al. Characteristics of dynamic fracture of aluminum and metallographic analysis of recovered samples in laser experiments[J]. High Power Laser and Particle Beams, 2015, 27: 071006. doi: 10.11884/HPLPB201527.071006
Citation: Qian Kun, Wang Jiushan, Zhang Shoujin, et al. Infrared dim small target tracking based on side window filtering and spatial-temporal regularized correlation filters[J]. High Power Laser and Particle Beams, 2023, 35: 099002. doi: 10.11884/HPLPB202335.230080

Infrared dim small target tracking based on side window filtering and spatial-temporal regularized correlation filters

doi: 10.11884/HPLPB202335.230080
  • Received Date: 2023-04-10
  • Accepted Date: 2023-07-13
  • Rev Recd Date: 2023-06-05
  • Available Online: 2023-07-14
  • Publish Date: 2023-09-15
  • Due to the less information of distant target, it is always challenging to accurately track the target in the task of infrared dim small target tracking. To improve the accuracy, based on correlation filtering framework, the side window filtering method which can extract the edge features of small infrared target is introduced, and an algorithm of distant target tracking is proposed. Specifically, the side window filtering method is used to process the searching area of the current target, this method could restrain the negative influence of background edge on dim small target location. Next, the correlation filters tracking model is constructed with temporal and spatial regularities to achieve accurate target tracking. To verify the performance of the proposed algorithm, six groups of real infrared dim small target image sequences were used for experiments, and the algorithm is compared with other typical algorithms such as KCF, SRDCF and STRCF. The experimental results show that the algorithm could effectively solve the problems of fast motion, low resolution and strong light background in infrared dim small target tracking tasks, getting higher accuracy with image sequences and complex background.
  • [1]
    Jennings D E, Jhabvala M D, Tucker C J, et al. Compact thermal imager: a flight demonstration of infrared technology for Earth observations[J]. Applied Optics, 2022, 61(14): 4215-4225. doi: 10.1364/AO.450442
    [2]
    Zhang Landan, Peng Zhenming. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11: 382. doi: 10.3390/rs11040382
    [3]
    Qiu Zhaobing, Ma Yong, Fan Fan, et al. A pixel-level local contrast measure for infrared small target detection[J]. Defence Technology, 2022, 18(9): 1589-1601. doi: 10.1016/j.dt.2021.07.002
    [4]
    Wan Minjie, Ye Xiaobo, Zhang Xiaojie, et al. Infrared small target tracking via Gaussian curvature-based compressive convolution feature extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7000905.
    [5]
    Dong Xiabin, Huang Xinsheng, Zheng Yongbin, et al. Infrared dim and small target detecting and tracking method inspired by Human Visual System[J]. Infrared Physics & Technology, 2014, 62: 100-109.
    [6]
    Ding Lianghui, Xu Xin, Cao Yuan, et al. Detection and tracking of infrared small target by jointly using SSD and pipeline filter[J]. Digital Signal Processing, 2021, 110: 102949. doi: 10.1016/j.dsp.2020.102949
    [7]
    Tian Mengchu, Chen Zhimin, Wang Huifen, et al. An intelligent particle filter for infrared dim small target detection and tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5318-5333. doi: 10.1109/TAES.2022.3169447
    [8]
    Chen Zhimin, Tian Mengchu, Bo Yuming et al. Improved infrared small target detection and tracking method based on new intelligence particle filter[J]. Computational Intelligence, 2018, 34(3): 917-938. doi: 10.1111/coin.12150
    [9]
    Chen Jian, Lin Yanming, Huang Detian, et al. Robust tracking algorithm for infrared target via correlation filter and particle filter[J]. Infrared Physics & Technology, 2020, 111: 103516.
    [10]
    Wang Zhile, Hou Qingyu, Hao Ling. Improved infrared target-tracking algorithm based on mean shift[J]. Applied Optics, 2012, 51(21): 5051-5059. doi: 10.1364/AO.51.005051
    [11]
    侯晴宇, 卞春江, 逯力红, 等. 红外图像中快速小目标的均值移位跟踪[J]. 哈尔滨工业大学学报, 2013, 45(4):79-83 doi: 10.11918/j.issn.0367-6234.2013.04.015

    Hou Qingyu, Bian Chunjiang, Lu Lihong, et al. Mean shift tracking for fast small target in IR imagery[J]. Journal of Harbin Institute of Technology, 2013, 45(4): 79-83 doi: 10.11918/j.issn.0367-6234.2013.04.015
    [12]
    Kwan C, Budavari B. Enhancing small moving target detection performance in low-quality and long-range infrared videos using optical flow techniques[J]. Remote Sensing, 2020, 12: 4024. doi: 10.3390/rs12244024
    [13]
    Soolmaz A, Mehdi R. Visual object tracking using similarity transformation and adaptive optical flow[J]. Multimedia Tools and Applications, 2021, 80(24): 33455-33473. doi: 10.1007/s11042-021-11344-7
    [14]
    Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010: 2544-2550.
    [15]
    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with Kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
    [16]
    Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. 2015: 4310-4318.
    [17]
    Li Feng, Tian Cheng, Zuo Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4904-4913.
    [18]
    Bins J, Dihl L L, Jung C R. Target tracking using multiple patches and weighted vector median filters[J]. Journal of Mathematical Imaging and Vision, 2013, 45(3): 293-307. doi: 10.1007/s10851-012-0354-y
    [19]
    Yin Hui, Gong Yuanhao, Qiu Guoping. Side window filtering[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 8750-8758.
    [20]
    Pedersen M S, Baxter K, Templeton B, et al. The matrix cookbook[M]. Denmark: Technical University of Denmark, 2008: 7-15.
    [21]
    Gao Chenqiang, Meng Deyu, Yang Yi, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi: 10.1109/TIP.2013.2281420
    [22]
    Qian Kun, Zhou Huixin, Rong Shenghui, et al. Infrared dim-small target tracking via singular value decomposition and improved Kernelized correlation filter[J]. Infrared Physics & Technology, 2017, 82: 18-27.
    [23]
    回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[J]. 中国科学数据, 2020, 5(3):291-302

    Hui Bingwei, Song Zhiyong, Fan Hongqi, et al. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background[J]. China Scientific Data, 2020, 5(3): 291-302
    [24]
    Liu Qiao, He Zhenyu, Li Xin, et al. PTB-TIR: a thermal infrared pedestrian tracking benchmark[J]. IEEE Transactions on Multimedia, 2020, 22(3): 666-675. doi: 10.1109/TMM.2019.2932615
  • Relative Articles

    [1]Qian Kun, Yang Junyan, Yu Yue, Zhao Dong, Rong Shenghui. Infrared target tracking based on selective convolution features[J]. High Power Laser and Particle Beams, 2019, 31(9): 093202. doi: 10.11884/HPLPB201931.190133
    [2]Zhao Dong, Zhou Huixin, Yu Junna, Wang Shicheng, Qin Hanlin, Cheng Kuanhong. Tracking of infrared dim small target in complex sky background[J]. High Power Laser and Particle Beams, 2018, 30(6): 061002. doi: 10.11884/HPLPB201830.170511
    [3]Wang Xiaowei, Wang Xudong, He Ming. Target tracking algorithm based on Mean Shift and histogram ratio background weighted[J]. High Power Laser and Particle Beams, 2016, 28(05): 051001. doi: 10.11884/HPLPB201628.051001
    [4]Wang Xiaoyang, Peng Zhenming, Zhang Ping, Meng Yeming. Infrared small dim target detection based on local contrast combined with region saliency[J]. High Power Laser and Particle Beams, 2015, 27(09): 091005. doi: 10.11884/HPLPB201527.091005
    [5]Wu Zigang, Peng Zhenming, Zhang Ping. Infrared dim target detection against strong clutter background[J]. High Power Laser and Particle Beams, 2015, 27(04): 041004. doi: 10.11884/HPLPB201527.041004
    [6]Ma Ke, Peng Zhenming, He Yanmin, Gao Yuan, Zhang Ping. An improved method for dim infrared target detection with nonsubsampled Contourlet transform[J]. High Power Laser and Particle Beams, 2013, 25(11): 2811-2815. doi: 10.3788/HPLPB20132511.2811
    [7]Jing Liang, Peng Zhenming, He Yanmin, Pu Tian. Infrared dim target detection based on anisotropic SUSAN filtering[J]. High Power Laser and Particle Beams, 2013, 25(09): 2208-2212. doi: 10.3788/HPLPB20132509.2208
    [8]Yu Hongming, Wan Min, Gu Jingliang. Detection algorithm of infrared dim target based on digital signal processor[J]. High Power Laser and Particle Beams, 2012, 24(08): 1951-1955. doi: 10.3788/HPLPB20122408.1951
    [9]Yang Hua, Chen Shanjing, Zeng Kai, Zhang Hong. Fast active contour tracking algorithm based on log-likelihood image segmentation[J]. High Power Laser and Particle Beams, 2012, 24(02): 321-326. doi: 10.3788/HPLPB20122402.0321
    [10]li zhengzhou, ma qiyou, zheng wei, liu shujun, jin gang. Infrared dim moving target tracking method based on multiple features[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [11]shi manli, peng zhenming, zhang qiheng, li quanzhong, lin zhiqin. Dim infrared target detection based on adaptive lateral inhibition network[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [12]qin jian, chen qian, qian weixian. Dim and small target detection based on complex filter bank[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [13]zhang qiang, cai jingju, zhang qiheng. Dim-small moving target detection in infrared image sequences[J]. High Power Laser and Particle Beams, 2011, 23(12): 32-33.
    [14]wu wei, zhou jinpeng, wang xingshu, qin shiqiao. Design of matched filter for target recognition in cloud background[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [15]qin hanlin, zhou huixin, liu shangqian, li fan. Dim and small target background suppression using bilateral filtering[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [16]xu jun-ping, peng zhen-ming, zhang qi-heng, xu zhi-yong. Blur and flickering imaging target detection and tracking against bright background[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [17]song hai-feng, chen xing-wu, wang lei, you an-qing. Capture of dim target in moving background[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [18]zheng li-yi, pan xu-dong, chen xing-wu, song hai-feng. Interacting multiple model algorithm in target tracking[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [19]yi heng yu, ye yi dong, zhang wei, ji yun song. Detection of targets under complicated background of cloud[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]zhang kun-hua, wang jing-ru, zhang qi-heng. Moment invariants tracking algorithm for extended target[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.9 %FULLTEXT: 28.9 %META: 64.4 %META: 64.4 %PDF: 6.6 %PDF: 6.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 0.4 %其他: 0.4 %Central District: 0.1 %Central District: 0.1 %China: 0.1 %China: 0.1 %Gangnam-gu: 0.3 %Gangnam-gu: 0.3 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %上海: 0.1 %上海: 0.1 %东京都: 0.1 %东京都: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.3 %六安: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 1.7 %北京: 1.7 %南京: 0.6 %南京: 0.6 %台州: 1.3 %台州: 1.3 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.5 %天津: 0.5 %太原: 0.2 %太原: 0.2 %宁波: 0.3 %宁波: 0.3 %安康: 0.3 %安康: 0.3 %宣城: 0.3 %宣城: 0.3 %巴塞罗那: 0.3 %巴塞罗那: 0.3 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %张家口: 2.2 %张家口: 2.2 %成都: 0.9 %成都: 0.9 %扬州: 0.3 %扬州: 0.3 %拉斯维加斯: 0.5 %拉斯维加斯: 0.5 %无锡: 7.3 %无锡: 7.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %武汉: 0.3 %武汉: 0.3 %毕节: 0.2 %毕节: 0.2 %沈阳: 0.1 %沈阳: 0.1 %淄博: 0.2 %淄博: 0.2 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 0.7 %漯河: 0.7 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %盐城: 1.9 %盐城: 1.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %索非亚: 0.1 %索非亚: 0.1 %纽约: 1.1 %纽约: 1.1 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 35.8 %芒廷维尤: 35.8 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %衢州: 0.6 %衢州: 0.6 %西宁: 19.8 %西宁: 19.8 %西安: 1.2 %西安: 1.2 %诺沃克: 4.9 %诺沃克: 4.9 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.1 %运城: 1.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.2 %郑州: 0.2 %重庆: 0.5 %重庆: 0.5 %镇江: 0.1 %镇江: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.1 %长沙: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.2 %香港: 0.2 %黄冈: 0.2 %黄冈: 0.2 %黄石: 0.1 %黄石: 0.1 %其他其他Central DistrictChinaGangnam-guSeattleUnited States[]上海东京都临汾丹东乌鲁木齐保定六安兰州北京南京台州合肥哈尔滨哥伦布大连天津太原宁波安康宣城巴塞罗那巴音郭楞常州常德广州张家口成都扬州拉斯维加斯无锡晋城普洱杭州武汉毕节沈阳淄博深圳温州湖州漯河烟台珠海盐城秦皇岛索非亚纽约绵阳芒廷维尤芝加哥苏州荆州衢州西宁西安诺沃克贵阳费利蒙运城遵义郑州重庆镇江长春长沙青岛香港黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (717) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return