Citation: | Zhang Bo, Qi Zheng, Feng Chao, et al. Research on physical mechanism of mode-locked free-electron laser based on electron beam phase space beating[J]. High Power Laser and Particle Beams, 2023, 35: 094001. doi: 10.11884/HPLPB202335.230090 |
[1] |
Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
|
[2] |
Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233
|
[3] |
Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
|
[4] |
Chapman H N. X-ray free-electron lasers for the structure and dynamics of macromolecules[J]. Annual Review of Biochemistry, 2019, 88: 35-58. doi: 10.1146/annurev-biochem-013118-110744
|
[5] |
Bostedt C, Boutet S, Fritz D M, et al. Linac coherent light source: the first five years[J]. Reviews of Modern Physics, 2016, 88: 015007. doi: 10.1103/RevModPhys.88.015007
|
[6] |
Thompson N R, McNeil B W J. Mode locking in a free-electron laser amplifier[J]. Physical Review Letters, 2008, 100: 203901. doi: 10.1103/PhysRevLett.100.203901
|
[7] |
Kur E, Dunning D J, McNeil B W J, et al. A wide bandwidth free-electron laser with mode locking using current modulation[J]. New Journal of Physics, 2011, 13: 063012. doi: 10.1088/1367-2630/13/6/063012
|
[8] |
Xiang Dao, Ding Yuantao, Raubenheimer T, et al. Mode-locked multichromatic X rays in a seeded free-electron laser for single-shot X-ray spectroscopy[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 050707. doi: 10.1103/PhysRevSTAB.15.050707
|
[9] |
Feng Chao, Chen Jianhui, Zhao Zhentang. Generating stable attosecond X-ray pulse trains with a mode-locked seeded free-electron laser[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 080703. doi: 10.1103/PhysRevSTAB.15.080703
|
[10] |
Henderson J R, McNeil B W J. Echo enabled harmonic generation free electron laser in a mode-locked configuration[J]. Europhysics Letters, 2012, 100: 64001. doi: 10.1209/0295-5075/100/64001
|
[11] |
Dunning D J, McNeil B W J, Thompson N R. Few-cycle pulse generation in an X-ray free-electron laser[J]. Physical Review Letters, 2013, 110: 104801. doi: 10.1103/PhysRevLett.110.104801
|
[12] |
Maroju P K, Grazioli C, Di Fraia M, et al. Attosecond pulse shaping using a seeded free-electron laser[J]. Nature, 2020, 578(7795): 386-391. doi: 10.1038/s41586-020-2005-6
|
[13] |
Maroju P K, Grazioli C, Di Fraia M, et al. Complex attosecond waveform synthesis at FEL FERMI[J]. Applied Sciences, 2021, 11: 9791. doi: 10.3390/app11219791
|
[14] |
Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
|
[1] | Zhang Zhiguang, Yang Huizhen, Liu Jinlong, Li Songheng, Su Hang, Luo Yuxiang, Wei Xiewen. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004. doi: 10.11884/HPLPB202133.210295 |
[2] | Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158 |
[3] | Wei Haobo, Dai Wanjun, Wang De’en, Yuan Qiang, Xue Qiao, Zhang Xin, Yang Ying, Zhao Junpu, Wei Xiaofeng, Hu Dongxia. Coupling correcting system with double deformable mirrors and double Hartman-Shack sensors[J]. High Power Laser and Particle Beams, 2017, 29(08): 081003. doi: 10.11884/HPLPB201729.170091 |
[4] | Xiang Rujian, Du Yinglei, Xu Honglai, Li Guohui, Wu Jing, Zhang Kai. Phase aberration correcting of a slab MOPA solid state laser with combined deformable mirrors[J]. High Power Laser and Particle Beams, 2015, 27(07): 071009. doi: 10.11884/HPLPB201527.071009 |
[5] | Chang Yan, Zhou Zhiqiang, Lü Yang, Yuan Xuewen, Xie Chuanlin. Design of embedded wavefront process and control system[J]. High Power Laser and Particle Beams, 2013, 25(S0): 67-70. |
[6] | Lei Xiang, Dong Lizhi, Yang Ping, Yan Hu, Liu Wenjin, Wang Shuai, Xu Bing. Diagnostic method of wavefront aberration for gain mediums in slab lasers[J]. High Power Laser and Particle Beams, 2012, 24(07): 1651-1655. |
[7] | han liqiang, wang qi, shida katsunori, li zhiquan. Improving fiber coupling efficiency of free space optical communication using blind optimization wavefront correction[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[8] | ma huimin, zhang pengfei, zhang jinghui, fan chengyu, wang yingjian. Stochastic parallel gradient descent algorithm for adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[9] | xie na, wang xiaodong, hu dongxia, dai wanjun, sun li, li qing, guo yi. Experimental study on wavefront correction in ultra-short laser facility[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[10] | yang yuqiang, tan liying, ma jing. Effects of localized deformation on acquisition precision in inter-satellite laser communications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- . |
[11] | xiang jing-song, yao zhou-shi, hu yu. Tracking algorithms for coupling space light distorted by turbulence into single mode fiber[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
[12] | li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- . |
[13] | li xin-yang, jiang wen-han. Zernike modal wavefront reconstruction error of Hartmann sensor on measuring the atmosphere disturbed wavefront[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- . |
[14] | liu tian hua, jiang zong fu, xu xiao jun, liu ze jin, zhao yi jun. Preliminary study on the compensation of the wavefront deformation inducedby freevortex aerodynamic window using AO system[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- . |
[15] | shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- . |
[16] | wan min, su yi, xiang ru-jian. Turbulence-induced low order aberrations of optical wavefronts in partial adaptive compensation with rayleigh beacon or sodium beacon[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- . |
[19] | li xinyang, jiang wenhan, wang chunhong, xian hao. POWER SPECTRA DENSITY METHOD FOR CONTROL EFFECT ANALYSIS OF ADAPTIVE OPTICS SYSTEM[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- . |