Citation: | Xu Zhiyong, Liu Jialei, Chen Yuqing, et al. Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident[J]. High Power Laser and Particle Beams, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093 |
[1] |
Bentaib A, Meynet N, Bleyer A. Overview on hydrogen risk research and development activities: methodology and open issues[J]. Nuclear Engineering and Technology, 2015, 47(1): 26-32. doi: 10.1016/j.net.2014.12.001
|
[2] |
Tong Lili, Zou Jie, Cao Xuewu. Analysis on hydrogen risk mitigation in severe accidents for pressurized heavy water reactor[J]. Progress in Nuclear Energy, 2015, 80: 128-135. doi: 10.1016/j.pnucene.2014.12.011
|
[3] |
Yanez J, Kuznetsov M, Souto-Iglesias A. An analysis of the hydrogen explosion in the Fukushima-Daiichi accident[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8261-8280. doi: 10.1016/j.ijhydene.2015.03.154
|
[4] |
彭程, 邓坚. 安全壳大空间内氢气分层行为的模型研究[J]. 核动力工程, 2021, 42(3):155-159 doi: 10.13832/j.jnpe.2021.03.0155
Peng Cheng, Deng Jian. Model study on hydrogen stratification behavior within a containment[J]. Nuclear Power Engineering, 2021, 42(3): 155-159 doi: 10.13832/j.jnpe.2021.03.0155
|
[5] |
Malet J, Porcheron E, Vendel J. OECD international standard problem ISP-47 on containment thermal-hydraulics-conclusions of the TOSQAN part[J]. Nuclear Engineering and Design, 2010, 240(10): 3209-3220. doi: 10.1016/j.nucengdes.2010.05.061
|
[6] |
Filippov A S, Grigoryev S Y, Tarasov O V. On the possible role of thermal radiation in containment thermal-hydraulics experiments by the example of CFD analysis of TOSQAN T114 air-He test[J]. Nuclear Engineering and Design, 2016, 310: 175-186. doi: 10.1016/j.nucengdes.2016.10.003
|
[7] |
Prabhakar A, Agrawal N, Raghavan V, et al. Experimental investigations on the evolution of stratified layer of helium in the unventilated vertical cylindrical enclosure of AIHMS facility under wall temperature induced natural convection[J]. Nuclear Engineering and Design, 2017, 323: 367-375. doi: 10.1016/j.nucengdes.2017.03.019
|
[8] |
Malet J, Laissac R. CFD calculations of stratification build-up tests of light gas in a closed vessel under controlled boundary conditions[J]. Computers & Fluids, 2015, 107: 224-241.
|
[9] |
Fernández-Cosials M K, Jimenez G, Lopez-Alonso E. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code[J]. Nuclear Engineering and Design, 2016, 297: 123-135. doi: 10.1016/j.nucengdes.2015.11.035
|
[10] |
Kelm S, Lehmkuhl J, Jahn W, et al. A comparative assessment of different experiments on buoyancy driven mixing processes by means of CFD[J]. Annals of Nuclear Energy, 2016, 93: 50-57. doi: 10.1016/j.anucene.2015.12.032
|
[11] |
刘汉臣, 武心壮, 向文娟, 等. 小尺度空间内氢气流动分布特性数值研究[J]. 核动力工程, 2022, 43(2):204-211 doi: 10.13832/j.jnpe.2022.02.0204
Liu Hanchen, Wu Xinzhuang, Xiang Wenjuan, et al. Numerical study on hydrogen flow distribution characteristics in small-scale space[J]. Nuclear Power Engineering, 2022, 43(2): 204-211 doi: 10.13832/j.jnpe.2022.02.0204
|
[12] |
许幼幼, 彭欢欢, 张明, 等. 严重事故下小型安全壳内氢气风险分析[J]. 核动力工程, 2020, 41(s2):64-68 doi: 10.13832/j.jnpe.2020.S2.0064
Xu Youyou, Peng Huanhuan, Zhang Ming, et al. Analysis of hydrogen risk in containment under severe accident[J]. Nuclear Power Engineering, 2020, 41(s2): 64-68 doi: 10.13832/j.jnpe.2020.S2.0064
|
[13] |
王迪, 曹学武. 不同湍流模型对氢气分布影响的数值研究[J]. 原子能科学技术, 2016, 50(9):1622-1628 doi: 10.7538/yzk.2016.50.09.1622
Wang Di, Cao Xuewu. Numerical study on effect of different turbulence models on hydrogen distribution[J]. Atomic Energy Science and Technology, 2016, 50(9): 1622-1628 doi: 10.7538/yzk.2016.50.09.1622
|
[14] |
侯丽强, 佟立丽, 曹学武, 等. 实验装置氢气混合的数值研究[J]. 核动力工程, 2015, 36(s2):146-150 doi: 10.13832/j.jnpe.2015.S2.0146
Hou Liqiang, Tong Lili, Cao Xuewu, et al. Numerical research on hydrogen mixing in an experimental device[J]. Nuclear Power Engineering, 2015, 36(s2): 146-150 doi: 10.13832/j.jnpe.2015.S2.0146
|
[15] |
Peng Cheng, Tong Lili, Cao Xuewu. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk[J]. Annals of Nuclear Energy, 2016, 94: 451-460. doi: 10.1016/j.anucene.2016.04.029
|
[16] |
Wilcox D C. Turbulence modeling for CFD[M]. 2nd ed. La Canada: DCW Industries, 1998.
|
[1] | Tan Xiao, Deng Li, Zhang Lingyu, Li Rui, Fu Yuanguang, Shi Dunfu, Liu Peng, Yang Chao. Development and tests of functions of proton, low-energy photon and electron transport in JMCT3.0 Monte Carlo particle transport program[J]. High Power Laser and Particle Beams, 2024, 36(9): 096002. doi: 10.11884/HPLPB202436.240117 |
[2] | Ye Yaoxin, Bao Pengfei, Zhao Jun. Application and quantitative verification of JMCT in engineering design of improved Chinese pressurized reactor CPR1000[J]. High Power Laser and Particle Beams, 2023, 35(12): 126001. doi: 10.11884/HPLPB202335.230016 |
[3] | Peng Lianghui, Yang Bo, Tang Chuntao, Fei Jingran, Bi Guangwen, Yang Weiyan, Shen Zhirui, Xiao Wei, Shen Jingwen, Liu Peng, Zhang Mingwan. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34(2): 026002. doi: 10.11884/HPLPB202234.210372 |
[4] | Bao Pengfei, Gong Yi, Wang Chao. Calculation of radial power distribution of the UO2 pellet with JMCT-JBURN[J]. High Power Laser and Particle Beams, 2022, 34(2): 026011. doi: 10.11884/HPLPB202234.210265 |
[5] | Shi Bo, Liu Xiaobo. The validation and calculation of highly enriched uranium models in JMCT[J]. High Power Laser and Particle Beams, 2022, 34(2): 026008. doi: 10.11884/HPLPB202234.210352 |
[6] | Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143 |
[7] | Zhu Jianyu, Li Rui, Huang Meng, Xu Xuefeng. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30(2): 026003. doi: 10.11884/HPLPB201830.170256 |
[8] | Huang Huan, Huang Hongwen, Guo Haibing. Coupled neutronics and thermal-hydraulics based on JMCT and FLUENT[J]. High Power Laser and Particle Beams, 2018, 30(10): 106002. doi: 10.11884/HPLPB201830.180012 |
[9] | Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222 |
[10] | Liu Peng, Shi Dunfu, Li Kang, Deng Li. Researchand validation on coupling method of JMCT and subchannel code[J]. High Power Laser and Particle Beams, 2018, 30(1): 016010. doi: 10.11884/HPLPB201830.170252 |
[11] | Sun Shiqiao, Pan Ziwen, Li Mengke, Zhou Yidong. Study of reactor criticality and kinetics calculation methods based on Geant4[J]. High Power Laser and Particle Beams, 2017, 29(05): 056007. doi: 10.11884/HPLPB201729.160413 |
[12] | Shi Dunfu, Li Kang, Qin Guiming, Liu Xiongguo. Coupling of Monte-Carlo code JMCT and sub-channel thermal-hydraulics code COBRA-EN[J]. High Power Laser and Particle Beams, 2017, 29(03): 036007. doi: 10.11884/HPLPB201729.160383 |
[13] | Li Rui, Li Gang, Zhang Baoyin, Deng Li. Implement of reactivity perturbation on JMCT[J]. High Power Laser and Particle Beams, 2017, 29(05): 056003. doi: 10.11884/HPLPB201729.160397 |
[14] | Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002 |
[15] | Li Gang, Zhang Baoyin, Deng Li, Hu Zehua, Ma Yan. Development of Monte Carlo particle transport code JMCT[J]. High Power Laser and Particle Beams, 2013, 25(01): 158-162. doi: 10.3788/HPLPB20132501.0158 |
[16] | Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970 |
[17] | Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006 |
[18] | Shangguan Danhua, Li Gang, Zhang Baoyin, Deng Li. Design of sampling tools for Monte Carlo particle transport code JMCT[J]. High Power Laser and Particle Beams, 2012, 24(12): 2955-2958. doi: 10.3788/HPLPB20122412.2955 |
[19] | Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015 |
[20] | chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- . |
1. | 周梦飞,吴晋营,邵增,申鹏飞,杨海峰. RMC程序临界安全基准校验分析. 现代应用物理. 2023(04): 110-115 . ![]() | |
2. | 刘晓波,胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-Ⅷ.0核数据库. 强激光与粒子束. 2022(02): 18-22 . ![]() | |
3. | 史博,刘晓波. JMCT的高浓铀模型验证计算. 强激光与粒子束. 2022(02): 48-54 . ![]() |