Shi Yiping, Yi Chaolong, Fan Yajun, et al. Design and experiments on a kind of high-power coplanar-feed impulse radiating antenna[J]. High Power Laser and Particle Beams, 2016, 28: 043001. doi: 10.11884/HPLPB201628.123001
Citation: Xu Zhiyong, Liu Jialei, Chen Yuqing, et al. Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident[J]. High Power Laser and Particle Beams, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093

Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident

doi: 10.11884/HPLPB202335.230093
  • Received Date: 2023-04-19
  • Accepted Date: 2023-08-19
  • Rev Recd Date: 2023-08-15
  • Available Online: 2023-10-08
  • Publish Date: 2023-10-08
  • The effects of zero equation model and k-ε model on hydrogen distribution have been analyzed by computational fluid dynamics program CFX, and the hydrogen distribution characteristics in the reactor space of marine reactor under typical water loss induced severe accident could be numerically simulated. The results show that it is more reasonable to use the k-ε model to simulate the hydrogen distribution in the reactor space during the concentrated release stage of hydrogen. During the period of severe accidents, the pressure changes at each point in the reactor space could be regarded as basically the same, and the temperature in the space will not continue to rise. Hydrogen forms a relatively obvious concentration gradient in the reactor space. At the top area of the reactor space and the area near the break the hydrogen concentration is abviously rising. After the hydrogen injection, the average vapor concentration in the reactor space is not high enough to maintain the inert environment, and there is a possibility of hydrogen combustion in the reactor cabin space. This study provide a basis for the research of hydrogen risk of marine reactor.
  • [1]
    Bentaib A, Meynet N, Bleyer A. Overview on hydrogen risk research and development activities: methodology and open issues[J]. Nuclear Engineering and Technology, 2015, 47(1): 26-32. doi: 10.1016/j.net.2014.12.001
    [2]
    Tong Lili, Zou Jie, Cao Xuewu. Analysis on hydrogen risk mitigation in severe accidents for pressurized heavy water reactor[J]. Progress in Nuclear Energy, 2015, 80: 128-135. doi: 10.1016/j.pnucene.2014.12.011
    [3]
    Yanez J, Kuznetsov M, Souto-Iglesias A. An analysis of the hydrogen explosion in the Fukushima-Daiichi accident[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8261-8280. doi: 10.1016/j.ijhydene.2015.03.154
    [4]
    彭程, 邓坚. 安全壳大空间内氢气分层行为的模型研究[J]. 核动力工程, 2021, 42(3):155-159 doi: 10.13832/j.jnpe.2021.03.0155

    Peng Cheng, Deng Jian. Model study on hydrogen stratification behavior within a containment[J]. Nuclear Power Engineering, 2021, 42(3): 155-159 doi: 10.13832/j.jnpe.2021.03.0155
    [5]
    Malet J, Porcheron E, Vendel J. OECD international standard problem ISP-47 on containment thermal-hydraulics-conclusions of the TOSQAN part[J]. Nuclear Engineering and Design, 2010, 240(10): 3209-3220. doi: 10.1016/j.nucengdes.2010.05.061
    [6]
    Filippov A S, Grigoryev S Y, Tarasov O V. On the possible role of thermal radiation in containment thermal-hydraulics experiments by the example of CFD analysis of TOSQAN T114 air-He test[J]. Nuclear Engineering and Design, 2016, 310: 175-186. doi: 10.1016/j.nucengdes.2016.10.003
    [7]
    Prabhakar A, Agrawal N, Raghavan V, et al. Experimental investigations on the evolution of stratified layer of helium in the unventilated vertical cylindrical enclosure of AIHMS facility under wall temperature induced natural convection[J]. Nuclear Engineering and Design, 2017, 323: 367-375. doi: 10.1016/j.nucengdes.2017.03.019
    [8]
    Malet J, Laissac R. CFD calculations of stratification build-up tests of light gas in a closed vessel under controlled boundary conditions[J]. Computers & Fluids, 2015, 107: 224-241.
    [9]
    Fernández-Cosials M K, Jimenez G, Lopez-Alonso E. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code[J]. Nuclear Engineering and Design, 2016, 297: 123-135. doi: 10.1016/j.nucengdes.2015.11.035
    [10]
    Kelm S, Lehmkuhl J, Jahn W, et al. A comparative assessment of different experiments on buoyancy driven mixing processes by means of CFD[J]. Annals of Nuclear Energy, 2016, 93: 50-57. doi: 10.1016/j.anucene.2015.12.032
    [11]
    刘汉臣, 武心壮, 向文娟, 等. 小尺度空间内氢气流动分布特性数值研究[J]. 核动力工程, 2022, 43(2):204-211 doi: 10.13832/j.jnpe.2022.02.0204

    Liu Hanchen, Wu Xinzhuang, Xiang Wenjuan, et al. Numerical study on hydrogen flow distribution characteristics in small-scale space[J]. Nuclear Power Engineering, 2022, 43(2): 204-211 doi: 10.13832/j.jnpe.2022.02.0204
    [12]
    许幼幼, 彭欢欢, 张明, 等. 严重事故下小型安全壳内氢气风险分析[J]. 核动力工程, 2020, 41(s2):64-68 doi: 10.13832/j.jnpe.2020.S2.0064

    Xu Youyou, Peng Huanhuan, Zhang Ming, et al. Analysis of hydrogen risk in containment under severe accident[J]. Nuclear Power Engineering, 2020, 41(s2): 64-68 doi: 10.13832/j.jnpe.2020.S2.0064
    [13]
    王迪, 曹学武. 不同湍流模型对氢气分布影响的数值研究[J]. 原子能科学技术, 2016, 50(9):1622-1628 doi: 10.7538/yzk.2016.50.09.1622

    Wang Di, Cao Xuewu. Numerical study on effect of different turbulence models on hydrogen distribution[J]. Atomic Energy Science and Technology, 2016, 50(9): 1622-1628 doi: 10.7538/yzk.2016.50.09.1622
    [14]
    侯丽强, 佟立丽, 曹学武, 等. 实验装置氢气混合的数值研究[J]. 核动力工程, 2015, 36(s2):146-150 doi: 10.13832/j.jnpe.2015.S2.0146

    Hou Liqiang, Tong Lili, Cao Xuewu, et al. Numerical research on hydrogen mixing in an experimental device[J]. Nuclear Power Engineering, 2015, 36(s2): 146-150 doi: 10.13832/j.jnpe.2015.S2.0146
    [15]
    Peng Cheng, Tong Lili, Cao Xuewu. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk[J]. Annals of Nuclear Energy, 2016, 94: 451-460. doi: 10.1016/j.anucene.2016.04.029
    [16]
    Wilcox D C. Turbulence modeling for CFD[M]. 2nd ed. La Canada: DCW Industries, 1998.
  • Relative Articles

    [1]Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406
    [2]Qi Xiongfei, Hou Liqiang, Du Zhengyu, Cao Xuewu. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32(5): 056002. doi: 10.11884/HPLPB202032.190420
    [3]Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008
    [4]Tang Mi, Liu Cangli, Li Ping, Zhong Min, Bai Jinsong, Xie Long. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012, 24(09): 2203-2206. doi: 10.3788/HPLPB20122409.2203
    [5]li linbo, lu xingqiang, cao huabao, li zhenghong, xu rongkun, yang jianlun. Simulation analysis for backward-reflected laser in high power laser amplifier[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [6]gu xiaowei, meng lin, li jiayin, sun yiqin, yu xinhua. Three-dimensional numerical simulation of microhollow cathode discharge model[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [7]zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [8]peng tang-chao, shu xiao-jian, dou yu-huan. Numerical simulations of chirped pulse amplification at FEL[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [9]ma qing-li, tang shi-biao, zou ji-wei. Numerical simulation of distribution of recoil proton in plastic scintillating fiber irradiated by high-energy neutron[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [10]tian dong-bin, yuan xiao-dong, zu xiao-tao, wang bi-yi, xu shi-zhen, guo yuan-jun, jiang xiao-dong, li xu-ping, zheng wan-guo. Numerical simulation of light intensity distribution in vicinity of defect on fused silica subsurface[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [11]ge ming-li, liu qing-xiang, li xiang-qiang, zhao yun-fu. Numerical simulation and experimental research of coaxial-inserting-fin phase shifter[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [12]qian xian-mei, zhu wen-yue, rao rui-zhong. Simulation of effects of beam wander on scintillation index of a focused Gaussian-beam[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [13]zhang song-bao, tang bin. Simulation and experiment of neutron radiography[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [14]zhang fa-qiang, yang jian-lun, li zheng-hong, chen fa-xin, ying chun-tong, liu guang-jun. Numerical simulation of high energy neutron radiography[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]sun jun, liu guo-zhi, lin yu-zheng, xiao ren-zhen. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [16]tu bo, jiang jian-feng, zhou tang-jian, cui ling-ling, yao zhen-yu. Numerical simulation of medium temperature and stress for high power disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [17]he feng, su jian-cang, li yong-dong, liu chun-liang, sun jian. Numerical simulation of semiconductor opening switch[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [18]phyzhang guo ping, zhang tan xin, zheng wu di. Test of simulation by experiments of Nelike Ge Xray lasers[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [19]wang li, li hong-fu, niu xin-jian, deng xue. Analysis of the influence of the magnetic field profiles on the high-power gyrotron's magnetic injection gun[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [20]zhu peng-fei, qian lie-jia, lin zun-qi. Numerical studies of characteristic of optical parametric chirped pulse amplification[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.5 %FULLTEXT: 31.5 %META: 62.2 %META: 62.2 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.6 %其他: 0.6 %Seattle: 0.2 %Seattle: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %丹东: 0.2 %丹东: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.6 %保定: 0.6 %北京: 3.1 %北京: 3.1 %北伯根: 0.2 %北伯根: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南里奥格兰德州: 0.7 %南里奥格兰德州: 0.7 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %天津: 0.2 %天津: 0.2 %安康: 0.2 %安康: 0.2 %宿迁: 0.2 %宿迁: 0.2 %常德: 0.6 %常德: 0.6 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 2.0 %成都: 2.0 %扬州: 0.2 %扬州: 0.2 %晋城: 0.2 %晋城: 0.2 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.2 %沈阳: 0.2 %海口: 0.2 %海口: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.6 %温州: 0.6 %湖州: 0.9 %湖州: 0.9 %漯河: 1.1 %漯河: 1.1 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 48.1 %芒廷维尤: 48.1 %衢州: 0.9 %衢州: 0.9 %西宁: 10.6 %西宁: 10.6 %西安: 0.9 %西安: 0.9 %诺沃克: 6.7 %诺沃克: 6.7 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.2 %达州: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.6 %重庆: 0.6 %长沙: 0.9 %长沙: 0.9 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %马哈达翁达: 0.7 %马哈达翁达: 0.7 %其他其他Seattle上海东莞丹东乌鲁木齐保定北京北伯根华盛顿州南里奥格兰德州博阿努瓦台州合肥哈尔滨哥伦布天津安康宿迁常德广州张家口成都扬州晋城杭州格兰特县武汉沈阳海口深圳温州湖州漯河烟台石家庄秦皇岛绵阳芒廷维尤衢州西宁西安诺沃克贵阳达州运城遵义邯郸郑州重庆长沙青岛鞍山马哈达翁达

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (335) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return