Citation: | Wang Qi. Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors[J]. High Power Laser and Particle Beams, 2023, 35: 116004. doi: 10.11884/HPLPB202335.230096 |
[1] |
上官志洪, 黄彦君, 陶云良, 等. 内陆核电厂排放氚的辐射环境影响评价[J]. 辐射防护, 2012, 32(2):65-71
Shangguan Zhihong, Huang Yanjun, Tao Yunliang, et al. Radiological environmental impact assessment for tritium discharged from inland NPPs[J]. Radiation Protection, 2012, 32(2): 65-71
|
[2] |
Peterson H T, Baker D A. Tritium production, releases and population doses at nuclear power reactors[J]. Fusion Technology, 1985, 8(2): 2544-2550.
|
[3] |
苏耿华, 包鹏飞, 韩嵩. 反应堆二次中子源源强计算及验证[J]. 强激光与粒子束, 2017, 29:036023 doi: 10.11884/HPLPB201729.160186
Su Genghua, Bao Pengfei, Han Song. Calculation and verification of secondary neutron source intensity of nuclear reactor[J]. High Power Laser and Particle Beams, 2017, 29: 036023 doi: 10.11884/HPLPB201729.160186
|
[4] |
Andrieu C, Ravel S, Ducros G, et al. Release of fission tritium through Zircaloy-4 fuel cladding tubes[J]. Journal of Nuclear Materials, 2005, 347(1/2): 12-19.
|
[5] |
付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34:026009 doi: 10.11884/HPLPB202234.210399
Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009 doi: 10.11884/HPLPB202234.210399
|
[6] |
杨昭林, 王亮, 周永海, 等. 压水堆核电厂氚排放源项的计算及验证[J]. 核科学与工程, 2020, 40(3):359-366
Yang Zhaolin, Wang Liang, Zhou Yonghai, et al. Calculation and verification of tritium release for PWR nuclear power plants[J]. Nuclear Science and Engineering, 2020, 40(3): 359-366
|
[7] |
孔亮. 压水堆换料循环取消次级中子源组件的研究[D]. 上海: 上海交通大学, 2018: 20-29
Kong Liang. Study on cancelling secondary source assemblies during refuling cycles[D]. Shanghai: Shanghai Jiao Tong University, 2018: 20-29
|
[8] |
Charlier A, Gubel P, Vandenberg C, et al. Experimental study of the tritium inventory in the BR3 and extrapolation to a P.W.R. of 900 MWe[R]. Luxembourg: Commission of the European Communities, 1982.
|
[9] |
Burns K, Love E, Elmore M. Tritium production in secondary neutron sources in pressurized water reactors[J]. Fusion Science and Technology, 2017, 71(4): 544-548. doi: 10.1080/15361055.2017.1291038
|
[10] |
Shaver M W, Lanning D D. Secondary startup neutron sources as a source of tritium in a pressurized water reactor (PWR) reactor coolant system[R]. Richland: Pacific Northwest National Lab. , 2010.
|
[11] |
IAEA. Power reactor information system (PRIS)[EB/OL]. 2022 [2023-10-19]. https://www.iaea.org/resources/databases/power-reactor-information-system-pris.
|
[12] |
U. S. NRC. Radioactive effluent and environmental reports[EB/OL]. 2022 [2023-10-19]. https://oriseapps.orau.gov/Effluent/Reports/Common/YearSiteReports.
|
[13] |
Austin J H, Elleman T S, Verghese K. Surface effects on the diffusion of tritium in 304-stainless steel and zircaloy-2[J]. Journal of Nuclear Materials, 1973, 48(3): 307-316. doi: 10.1016/0022-3115(73)90027-5
|
[14] |
Kearns J J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4[J]. Journal of Nuclear Materials, 1967, 22(3): 292-303. doi: 10.1016/0022-3115(67)90047-5
|
[15] |
Andrieu C. Étude de la perméation du tritium à travers les gaines de crayons combustibles type R. E. P[D]. Grenoble: Grenoble INPG, 1998.
|
[16] |
GB 6249-2011, 核动力厂环境辐射防护规定[S
GB 6249-2011, Regulations for environmental radiation protection of nuclear power plant[S
|