Volume 35 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099
Citation: Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099

Performance test and fatigue test of tensile/compressible piezoelectric ceramics

doi: 10.11884/HPLPB202335.230099
  • Received Date: 2023-04-23
  • Accepted Date: 2023-06-19
  • Rev Recd Date: 2023-06-30
  • Available Online: 2023-07-13
  • Publish Date: 2023-10-08
  • Piezoelectric ceramic is the main actuator of deformable mirror, which is the core device of adaptive optics system. Its performance directly affects the correction ability of deformable mirror and even adaptive optics system. Performance parameters of the tensile/compressible piezoelectric ceramics (5 mm×5 mm×38 mm) with loading voltage of ±350 V were tested, including displacement, hysteresis, capacitance, impedance and coefficient of thermal expansion, etc. The test results show the tensile capacity of three samples was more than 250 N, and 10 million fatigue tests (±150 N@5 Hz sinusoidal load) were carried out on 5# sample. The experimental results show that the displacement and capacitance of the sample reduced than 5%. Through the tensile/pressure and fatigue test, the properties and service life of the piezoelectric ceramic were examined, which provides some supporting data for the development of deformable mirrors.
  • loading
  • [1]
    陶帅, 白鸿柏, 何建设, 等. 压电作动器位移输出特性分析[J]. 压电与声光, 2010, 32(5):807-810

    Tao Shuai, Bai Hongbai, He Jianshe, et al. Analysis of the output displacement characteristics of piezoelectric actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(5): 807-810
    [2]
    荣伟彬, 曲东升, 孙立宁, 等. 压电陶瓷微位移器件迟滞模型的研究[J]. 压电与声光, 2003, 25(1):22-25,35

    Rong Weibin, Qu Dongsheng, Sun Lining, et al. Research on hysteresis model of piezoelectric micropositioning actuator[J]. Piezoelectrics & Acoustooptics, 2003, 25(1): 22-25,35
    [3]
    曲东升, 孙立宁, 丁庆勇. 压电陶瓷驱动器的建模分析与自适应逆控制[J]. 机器人, 2001, 23(7):688-690,694

    Qu Dongsheng, Sun Lining, Ding Qingyong. Model analysing and adaptive inverse control of piezoelectric actuator[J]. Robot, 2001, 23(7): 688-690,694
    [4]
    李国会, 杨媛, 何忠武, 等. 四束激光光轴高精度稳定控制技术[J]. 强激光与粒子束, 2014, 26:031009 doi: 10.3788/HPLPB20142603.31009

    Li Guohui, Yang Yuan, He Zhongwu, et al. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26: 031009 doi: 10.3788/HPLPB20142603.31009
    [5]
    贾巍, 范承玉. 应用于快速倾斜镜的压电陶瓷驱动电源[J]. 量子电子学报, 2015, 32(2):235-240

    Jia Wei, Fan Chengyu. A PZT driving power of fast steering mirror[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 235-240
    [6]
    林旭东, 刘欣悦, 王建立, 等. 基于压电陶瓷促动器的连续镜面变形镜研制进展[J]. 激光与光电子学进展, 2014, 51:090003

    Lin Xudong, Liu Xinyue, Wang Jianli, et al. Progress of the continuous surface deformable mirror based on piezo-ceramic actuator[J]. Laser & Optoelectronics Progress, 2014, 51: 090003
    [7]
    李国会, 徐宏来, 吴晶, 等. 非稳腔薄片激光器腔内像差组合式主动校正技术[J]. 中国激光, 2020, 47:1001004 doi: 10.3788/CJL202047.1001004

    Li Guohui, Xu Honglai, Wu Jing, et al. Active correction of intracavity aberration combination in unstable resonator thin-disk laser[J]. Chinese Journal of Lasers, 2020, 47: 1001004 doi: 10.3788/CJL202047.1001004
    [8]
    Tyson R. Principles of adaptive optics[M]. 3rd ed. Boca Raton: CRC Press, 2010.
    [9]
    贾巍, 范承玉, 王海涛. 一种快速倾斜镜系统的设计与应用[J]. 强激光与粒子束, 2015, 27:051003 doi: 10.3788/HPLPB20152705.51003

    Jia Wei, Fan Chengyu, Wang Haitao. Design and application of fast steering mirror system[J]. High Power Laser and Particle Beams, 2015, 27: 051003 doi: 10.3788/HPLPB20152705.51003
    [10]
    Rana M S, Pota H R, Petersen I R. A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging[J]. Asian Journal of Control, 2018, 20(4): 1379-1399. doi: 10.1002/asjc.1728
    [11]
    赵彤, 谭永红. 迟滞非线性动态系统神经网络自适应控制[J]. 计算机仿真, 2004, 21(8):104-107

    Zhao Tong, Tan Yonghong. RBFNN-based adaptive control for hysteresis nonlinear dynamic system[J]. Computer Simulation, 2004, 21(8): 104-107
    [12]
    崔玉国, 孙宝元, 董维杰, 等. 压电陶瓷执行器迟滞与非线性成因分析[J]. 光学 精密工程, 2003, 11(3):270-275

    Cui Yuguo, Sun Baoyuan, Dong Weijie, et al. Causes for hysteresis and nonlinearity of piezoelectric ceramic actuators[J]. Optics and Precision Engineering, 2003, 11(3): 270-275
    [13]
    熊永程, 贾文红, 张丽敏, 等. 基于深度神经网络(DNN)的压电陶瓷前馈补偿研究[J]. 压电与声光, 2022, 44(1):35-41

    Xiong Yongcheng, Jia Wenhong, Zhang Limin, et al. Research on feedforward compensation of piezoelectric ceramics based on deep neural network(DNN)[J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 35-41
    [14]
    巩云云, 初瑞清, 徐志军, 等. CaCO3对TiO2系压敏陶瓷性能的影响[J]. 陶瓷学报, 2017, 38(2):212-216

    Gong Yunyun, Chu Ruiqing, Xu Zhijun, et al. Effect of CaCO3 doping on TiO2-based baristor ceramics properties[J]. Journal of Ceramics, 2017, 38(2): 212-216
    [15]
    尹慧娟, 徐志军, 初瑞清, 等. La掺杂对0.75PMN-0.25PT压电陶瓷结构及其性能的影响[J]. 硅酸盐通报, 2013, 32(6):1067-1071

    Yi Huijuan, Xu Zhijun, Cu Ruiqing, et al. Effects of La-doping on the structure and electrical properties of 0.75PMN-0.25PT piezoelectric ceramics[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1067-1071
    [16]
    王芳, 卢庆杰, 庄锦程, 等. 基于迟滞非线性补偿系统的光学元件形貌检测[J]. 光子学报, 2020, 49:0612001 doi: 10.3788/gzxb20204906.0612001

    Wang Fang, Lu Qingjie, Zhuang Jincheng, et al. Morphology detection of optical components based on hysteresis nonlinear compensation system[J]. Acta Photonica Sinica, 2020, 49: 0612001 doi: 10.3788/gzxb20204906.0612001
    [17]
    张桂林, 张承进, 赵学良. 压电驱动器记忆特性迟滞非线性建模[J]. 光学 精密工程, 2012, 20(5):996-1001 doi: 10.3788/OPE.20122005.0996

    Zhang Guilin, Zhang Chengjin, Zhao Xueliang. Modeling of nonlocal memory hysteresis in piezoelectric actuators[J]. Optics and Precision Engineering, 2012, 20(5): 996-1001 doi: 10.3788/OPE.20122005.0996
    [18]
    钟云, 黄楠, 曾俊海. 压电驱动器迟滞非线性的增强型Prandtl-Ishlinskii模型建模及实验验证[J]. 机电工程技术, 2020, 49(10):33-35

    Zhong Yun, Huang Nan, Zeng Junhai. Enhanced Prandtl-Ishlinskii modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Mechanical & Electrical Engineering Technology, 2020, 49(10): 33-35
    [19]
    Al Janaideh M, Rakheja S, Su Chunyi. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. doi: 10.1109/TMECH.2010.2052366
    [20]
    罗帅, 王家秋, 张彬. 压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J]. 中国激光, 2018, 45:0905002 doi: 10.3788/CJL201845.0905002

    Luo Shuai, Wang Jiaqiu, Zhang Bin. Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror[J]. Chinese Journal of Lasers, 2018, 45: 0905002 doi: 10.3788/CJL201845.0905002
    [21]
    陈彩云. 硬性PZT基压电陶瓷电致疲劳特性及其机理研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2018: 47-81

    Chen Caiyun. The fatigue characteristics and fatigue mechanisms of hard type lead based piezoelectric ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 47-81
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (685) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return