Citation: | Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099 |
[1] |
陶帅, 白鸿柏, 何建设, 等. 压电作动器位移输出特性分析[J]. 压电与声光, 2010, 32(5):807-810
Tao Shuai, Bai Hongbai, He Jianshe, et al. Analysis of the output displacement characteristics of piezoelectric actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(5): 807-810
|
[2] |
荣伟彬, 曲东升, 孙立宁, 等. 压电陶瓷微位移器件迟滞模型的研究[J]. 压电与声光, 2003, 25(1):22-25,35
Rong Weibin, Qu Dongsheng, Sun Lining, et al. Research on hysteresis model of piezoelectric micropositioning actuator[J]. Piezoelectrics & Acoustooptics, 2003, 25(1): 22-25,35
|
[3] |
曲东升, 孙立宁, 丁庆勇. 压电陶瓷驱动器的建模分析与自适应逆控制[J]. 机器人, 2001, 23(7):688-690,694
Qu Dongsheng, Sun Lining, Ding Qingyong. Model analysing and adaptive inverse control of piezoelectric actuator[J]. Robot, 2001, 23(7): 688-690,694
|
[4] |
李国会, 杨媛, 何忠武, 等. 四束激光光轴高精度稳定控制技术[J]. 强激光与粒子束, 2014, 26:031009 doi: 10.3788/HPLPB20142603.31009
Li Guohui, Yang Yuan, He Zhongwu, et al. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26: 031009 doi: 10.3788/HPLPB20142603.31009
|
[5] |
贾巍, 范承玉. 应用于快速倾斜镜的压电陶瓷驱动电源[J]. 量子电子学报, 2015, 32(2):235-240
Jia Wei, Fan Chengyu. A PZT driving power of fast steering mirror[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 235-240
|
[6] |
林旭东, 刘欣悦, 王建立, 等. 基于压电陶瓷促动器的连续镜面变形镜研制进展[J]. 激光与光电子学进展, 2014, 51:090003
Lin Xudong, Liu Xinyue, Wang Jianli, et al. Progress of the continuous surface deformable mirror based on piezo-ceramic actuator[J]. Laser & Optoelectronics Progress, 2014, 51: 090003
|
[7] |
李国会, 徐宏来, 吴晶, 等. 非稳腔薄片激光器腔内像差组合式主动校正技术[J]. 中国激光, 2020, 47:1001004 doi: 10.3788/CJL202047.1001004
Li Guohui, Xu Honglai, Wu Jing, et al. Active correction of intracavity aberration combination in unstable resonator thin-disk laser[J]. Chinese Journal of Lasers, 2020, 47: 1001004 doi: 10.3788/CJL202047.1001004
|
[8] |
Tyson R. Principles of adaptive optics[M]. 3rd ed. Boca Raton: CRC Press, 2010.
|
[9] |
贾巍, 范承玉, 王海涛. 一种快速倾斜镜系统的设计与应用[J]. 强激光与粒子束, 2015, 27:051003 doi: 10.3788/HPLPB20152705.51003
Jia Wei, Fan Chengyu, Wang Haitao. Design and application of fast steering mirror system[J]. High Power Laser and Particle Beams, 2015, 27: 051003 doi: 10.3788/HPLPB20152705.51003
|
[10] |
Rana M S, Pota H R, Petersen I R. A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging[J]. Asian Journal of Control, 2018, 20(4): 1379-1399. doi: 10.1002/asjc.1728
|
[11] |
赵彤, 谭永红. 迟滞非线性动态系统神经网络自适应控制[J]. 计算机仿真, 2004, 21(8):104-107
Zhao Tong, Tan Yonghong. RBFNN-based adaptive control for hysteresis nonlinear dynamic system[J]. Computer Simulation, 2004, 21(8): 104-107
|
[12] |
崔玉国, 孙宝元, 董维杰, 等. 压电陶瓷执行器迟滞与非线性成因分析[J]. 光学 精密工程, 2003, 11(3):270-275
Cui Yuguo, Sun Baoyuan, Dong Weijie, et al. Causes for hysteresis and nonlinearity of piezoelectric ceramic actuators[J]. Optics and Precision Engineering, 2003, 11(3): 270-275
|
[13] |
熊永程, 贾文红, 张丽敏, 等. 基于深度神经网络(DNN)的压电陶瓷前馈补偿研究[J]. 压电与声光, 2022, 44(1):35-41
Xiong Yongcheng, Jia Wenhong, Zhang Limin, et al. Research on feedforward compensation of piezoelectric ceramics based on deep neural network(DNN)[J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 35-41
|
[14] |
巩云云, 初瑞清, 徐志军, 等. CaCO3对TiO2系压敏陶瓷性能的影响[J]. 陶瓷学报, 2017, 38(2):212-216
Gong Yunyun, Chu Ruiqing, Xu Zhijun, et al. Effect of CaCO3 doping on TiO2-based baristor ceramics properties[J]. Journal of Ceramics, 2017, 38(2): 212-216
|
[15] |
尹慧娟, 徐志军, 初瑞清, 等. La掺杂对0.75PMN-0.25PT压电陶瓷结构及其性能的影响[J]. 硅酸盐通报, 2013, 32(6):1067-1071
Yi Huijuan, Xu Zhijun, Cu Ruiqing, et al. Effects of La-doping on the structure and electrical properties of 0.75PMN-0.25PT piezoelectric ceramics[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1067-1071
|
[16] |
王芳, 卢庆杰, 庄锦程, 等. 基于迟滞非线性补偿系统的光学元件形貌检测[J]. 光子学报, 2020, 49:0612001 doi: 10.3788/gzxb20204906.0612001
Wang Fang, Lu Qingjie, Zhuang Jincheng, et al. Morphology detection of optical components based on hysteresis nonlinear compensation system[J]. Acta Photonica Sinica, 2020, 49: 0612001 doi: 10.3788/gzxb20204906.0612001
|
[17] |
张桂林, 张承进, 赵学良. 压电驱动器记忆特性迟滞非线性建模[J]. 光学 精密工程, 2012, 20(5):996-1001 doi: 10.3788/OPE.20122005.0996
Zhang Guilin, Zhang Chengjin, Zhao Xueliang. Modeling of nonlocal memory hysteresis in piezoelectric actuators[J]. Optics and Precision Engineering, 2012, 20(5): 996-1001 doi: 10.3788/OPE.20122005.0996
|
[18] |
钟云, 黄楠, 曾俊海. 压电驱动器迟滞非线性的增强型Prandtl-Ishlinskii模型建模及实验验证[J]. 机电工程技术, 2020, 49(10):33-35
Zhong Yun, Huang Nan, Zeng Junhai. Enhanced Prandtl-Ishlinskii modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Mechanical & Electrical Engineering Technology, 2020, 49(10): 33-35
|
[19] |
Al Janaideh M, Rakheja S, Su Chunyi. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. doi: 10.1109/TMECH.2010.2052366
|
[20] |
罗帅, 王家秋, 张彬. 压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J]. 中国激光, 2018, 45:0905002 doi: 10.3788/CJL201845.0905002
Luo Shuai, Wang Jiaqiu, Zhang Bin. Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror[J]. Chinese Journal of Lasers, 2018, 45: 0905002 doi: 10.3788/CJL201845.0905002
|
[21] |
陈彩云. 硬性PZT基压电陶瓷电致疲劳特性及其机理研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2018: 47-81
Chen Caiyun. The fatigue characteristics and fatigue mechanisms of hard type lead based piezoelectric ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 47-81
|