Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100
Citation: Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100

Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering

doi: 10.11884/HPLPB202335.230100
  • Received Date: 2023-04-23
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-06-17
  • Available Online: 2023-06-28
  • Publish Date: 2023-08-15
  • A dual-constrained image reconstruction algorithm based on Kalman filtering is proposed to solve the problem of reconstructing the two-dimensional shock wave fringe image from the compressed image obtained by the Velocity Interferometer System for Any Reflector (VISAR) based on Compressed Ultrafast Photography (CUP). Based on the sparsity and smoothness of fringed images, the algorithm firstly transforms the problem into an optimization problem based on wavelet and total variational double prior constraints, and then, considering the noise of actual imaging, the weighted Kalman filter is used to predict and adjust the existing information of the image, and finally the Kalman filter is introduced into the iterative process of the two-step iterative threshold algorithm, and then the double-constraint optimization problem is solved to realize the accurate reconstruction of the compressed image. In the large-noise simulation experiment, the peak signal-to-noise ratio and structural similarity of the reconstructed images of the algorithm are increased by 4.8 dB and 14.81%, respectively, which significantly improves the image reconstruction quality. In actual experiments, the algorithm reconstructs a clear shock wave fringe image and reduces the maximum relative error of shock wave velocity by 9.57% and the average relative error of shock wave velocity by 2.2%, which verifies the feasibility of the algorithm.
  • loading
  • [1]
    Celliers P M, Erskine D J, Sorce C M, et al. A high-resolution two-dimensional imaging velocimeter[J]. Review of Scientific Instruments, 2010, 81: 035101. doi: 10.1063/1.3310076
    [2]
    王峰, 关赞洋, 理玉龙, 等. 基于神光Ⅲ装置的光学诊断系统介绍[J]. 中国科学:物理学 力学 天文学, 2018, 48:065205

    Wang Feng, Guan Zanyang, Li Yulong, et al. Optical diagnostic systems based on Shenguang Ⅲ[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065205
    [3]
    吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019
    [4]
    王巧巧. 大国重器——激光惯性约束聚变[J]. 现代物理知识, 2019, 31(3):41-49

    Wang Qiaoqiao. The pillars of a great power—laser inertial constraint fusion[J]. Modern Physics, 2019, 31(3): 41-49
    [5]
    王强强. 飞秒时间分辨条纹相机的理论和实验研究[D]. 北京: 中国科学院西安光学精密机械研究所, 2014

    Wang Qiangqiang. Theoretical and experimental research on femtosecond temporal resolution streak camera[D]. Beijing: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2014.
    [6]
    Guan Zanyang, Li Yulong, Wang Feng, et al. Study on the length of diagnostic time window of CUP-VISAR[J]. Measurement Science and Technology, 2021, 32: 125208. doi: 10.1088/1361-6501/ac29d4
    [7]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [8]
    Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [9]
    Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
    [10]
    Madych W R. Solutions of underdetermined systems of linear equations[R]. Shaker Heights: Institute of Mathematical Statistics, 1991: 227-238.
    [11]
    Qureshi M A, Deriche M. A new wavelet based efficient image compression algorithm using compressive sensing[J]. Multimedia Tools and Applications, 2016, 75(12): 6737-6754. doi: 10.1007/s11042-015-2590-9
    [12]
    Pandey A K, Chaudhary J, Sharma A, et al. Optimum value of scale and threshold for compression of 99mTc-MDP bone scan images using Haar wavelet transform[J]. Indian Journal of Nuclear Medicine, 2022, 37(2): 154-161. doi: 10.4103/ijnm.ijnm_170_21
    [13]
    查志远. 自适应范数约束图像正则化重建研究[D]. 昆明: 昆明理工大学, 2015

    Zha Zhiyuan. Research on image regularization reconstruction with adaptive norm constraints[D]. Kunming: Kunming University of Science and Technology, 2015
    [14]
    Mahdaoui A E, Ouahabi A, Moulay M S. Image denoising using a compressive sensing approach based on regularization constraints[J]. Sensors, 2022, 22: 2199. doi: 10.3390/s22062199
    [15]
    Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695. doi: 10.1109/TIP.2010.2076294
    [16]
    张琦, 张慧, 潘健, 等. 一种新的卡尔曼滤波图像复原算法[J]. 湖北工业大学学报, 2022, 37(5):23-27

    Zhang Qi, Zhang Hui, Pan Jian, et al. A new Kalman filter image restoration algorithm[J]. Journal of Hubei University of Technology, 2022, 37(5): 23-27
    [17]
    Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/TIP.2007.909319
    [18]
    Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. doi: 10.4236/jcc.2019.73002
    [19]
    朱里, 李乔亮, 张婷, 等. 基于结构相似性的图像质量评价方法[J]. 光电工程, 2007, 34(11):108-113

    Zhu Li, Li Qiaoliang, Zhang Ting, et al. Metric of image quality based on structural similarity[J]. Opto-Electronic Engineering, 2007, 34(11): 108-113
    [20]
    孙雪. 基于提升算法的9/7整数小波变换的研究及硬件实现[D]. 哈尔滨: 哈尔滨工业大学, 2013

    Sun Xue. Design and implementation of 9/7 wavelet transform based lifting scheme[D]. Harbin: Harbin Institute of Technology, 2013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (509) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return