Li Weikai, Zhang Wei, Yin Dayu, et al. Design of closed orbit correction system for beam accumulation stage of CSRm[J]. High Power Laser and Particle Beams, 2019, 31: 035101. doi: 10.11884/HPLPB201931.180368
Citation: Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100

Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering

doi: 10.11884/HPLPB202335.230100
  • Received Date: 2023-04-23
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-06-17
  • Available Online: 2023-06-28
  • Publish Date: 2023-08-15
  • A dual-constrained image reconstruction algorithm based on Kalman filtering is proposed to solve the problem of reconstructing the two-dimensional shock wave fringe image from the compressed image obtained by the Velocity Interferometer System for Any Reflector (VISAR) based on Compressed Ultrafast Photography (CUP). Based on the sparsity and smoothness of fringed images, the algorithm firstly transforms the problem into an optimization problem based on wavelet and total variational double prior constraints, and then, considering the noise of actual imaging, the weighted Kalman filter is used to predict and adjust the existing information of the image, and finally the Kalman filter is introduced into the iterative process of the two-step iterative threshold algorithm, and then the double-constraint optimization problem is solved to realize the accurate reconstruction of the compressed image. In the large-noise simulation experiment, the peak signal-to-noise ratio and structural similarity of the reconstructed images of the algorithm are increased by 4.8 dB and 14.81%, respectively, which significantly improves the image reconstruction quality. In actual experiments, the algorithm reconstructs a clear shock wave fringe image and reduces the maximum relative error of shock wave velocity by 9.57% and the average relative error of shock wave velocity by 2.2%, which verifies the feasibility of the algorithm.
  • [1]
    Celliers P M, Erskine D J, Sorce C M, et al. A high-resolution two-dimensional imaging velocimeter[J]. Review of Scientific Instruments, 2010, 81: 035101. doi: 10.1063/1.3310076
    [2]
    王峰, 关赞洋, 理玉龙, 等. 基于神光Ⅲ装置的光学诊断系统介绍[J]. 中国科学:物理学 力学 天文学, 2018, 48:065205

    Wang Feng, Guan Zanyang, Li Yulong, et al. Optical diagnostic systems based on Shenguang Ⅲ[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065205
    [3]
    吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019
    [4]
    王巧巧. 大国重器——激光惯性约束聚变[J]. 现代物理知识, 2019, 31(3):41-49

    Wang Qiaoqiao. The pillars of a great power—laser inertial constraint fusion[J]. Modern Physics, 2019, 31(3): 41-49
    [5]
    王强强. 飞秒时间分辨条纹相机的理论和实验研究[D]. 北京: 中国科学院西安光学精密机械研究所, 2014

    Wang Qiangqiang. Theoretical and experimental research on femtosecond temporal resolution streak camera[D]. Beijing: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2014.
    [6]
    Guan Zanyang, Li Yulong, Wang Feng, et al. Study on the length of diagnostic time window of CUP-VISAR[J]. Measurement Science and Technology, 2021, 32: 125208. doi: 10.1088/1361-6501/ac29d4
    [7]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [8]
    Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [9]
    Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
    [10]
    Madych W R. Solutions of underdetermined systems of linear equations[R]. Shaker Heights: Institute of Mathematical Statistics, 1991: 227-238.
    [11]
    Qureshi M A, Deriche M. A new wavelet based efficient image compression algorithm using compressive sensing[J]. Multimedia Tools and Applications, 2016, 75(12): 6737-6754. doi: 10.1007/s11042-015-2590-9
    [12]
    Pandey A K, Chaudhary J, Sharma A, et al. Optimum value of scale and threshold for compression of 99mTc-MDP bone scan images using Haar wavelet transform[J]. Indian Journal of Nuclear Medicine, 2022, 37(2): 154-161. doi: 10.4103/ijnm.ijnm_170_21
    [13]
    查志远. 自适应范数约束图像正则化重建研究[D]. 昆明: 昆明理工大学, 2015

    Zha Zhiyuan. Research on image regularization reconstruction with adaptive norm constraints[D]. Kunming: Kunming University of Science and Technology, 2015
    [14]
    Mahdaoui A E, Ouahabi A, Moulay M S. Image denoising using a compressive sensing approach based on regularization constraints[J]. Sensors, 2022, 22: 2199. doi: 10.3390/s22062199
    [15]
    Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695. doi: 10.1109/TIP.2010.2076294
    [16]
    张琦, 张慧, 潘健, 等. 一种新的卡尔曼滤波图像复原算法[J]. 湖北工业大学学报, 2022, 37(5):23-27

    Zhang Qi, Zhang Hui, Pan Jian, et al. A new Kalman filter image restoration algorithm[J]. Journal of Hubei University of Technology, 2022, 37(5): 23-27
    [17]
    Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/TIP.2007.909319
    [18]
    Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. doi: 10.4236/jcc.2019.73002
    [19]
    朱里, 李乔亮, 张婷, 等. 基于结构相似性的图像质量评价方法[J]. 光电工程, 2007, 34(11):108-113

    Zhu Li, Li Qiaoliang, Zhang Ting, et al. Metric of image quality based on structural similarity[J]. Opto-Electronic Engineering, 2007, 34(11): 108-113
    [20]
    孙雪. 基于提升算法的9/7整数小波变换的研究及硬件实现[D]. 哈尔滨: 哈尔滨工业大学, 2013

    Sun Xue. Design and implementation of 9/7 wavelet transform based lifting scheme[D]. Harbin: Harbin Institute of Technology, 2013
  • Relative Articles

    [1]Ge Liang, Zhang Wei, An Shi, An Jingrui, Wang Pengpeng, Chang Jianjun. HIRFL-CSRm power supply monitoring system[J]. High Power Laser and Particle Beams, 2019, 31(2): 025102. doi: 10.11884/HPLPB201931.019003
    [2]Qin Zhiming, Mao Lijun, Zhao He, Tang Meitang, Li Jie, Yang Xiaodong, Yang Jiancheng, Ruan Shuang, Wu Bo, Wang Geng, Liu Jie, Qiao Jian. Research of the cooling beam lifetime in HIRFL-CSRm[J]. High Power Laser and Particle Beams, 2017, 29(08): 085106. doi: 10.11884/HPLPB201729.160553
    [3]Zhang Manzhou, Wang Kun, Zhang Qinglei, Tian Shunqiang, Jiang Bocheng. Compensations of double elliptical polarization undulator effects on the SSRF storage ring[J]. High Power Laser and Particle Beams, 2017, 29(07): 075103. doi: 10.11884/HPLPB201729.170014
    [4]Ren Qiang, Zhang Wei, An Shi, Liu Xiaojun, Chang Jianjun, Liu Junke. Monitoring system of power supply based on LabVIEW for main ring of ion cooler-storage ring[J]. High Power Laser and Particle Beams, 2016, 28(04): 045102. doi: 10.11884/HPLPB201628.125102
    [5]Zhu Rengui, Wang Ruilin, Zhang Qian, Lv Qing’ao, Xing Yanchang. Evolvement rule analysis of electromagnetic characteristics at interface between armature and rails[J]. High Power Laser and Particle Beams, 2015, 27(10): 103256. doi: 10.11884/HPLPB201527.103256
    [6]Zhu Rengui, Li Zhiyuan, Zhang Qian, Wang Ruilin, Xing Yanchang. Initial contact status for interface between armature and rail in electromagnetic launch[J]. High Power Laser and Particle Beams, 2014, 26(11): 115003. doi: 10.11884/HPLPB201426.115003
    [7]fu fuxing, zhang bin. Effect of wave-front phase distortion correction[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [8]xuan ke, wang lin, li chuan, li weimin, wang jigang, bao xun, xu hongliang, liu gongfa, liu zuping. Beam closed orbit correction and feedback by constrained linear least squares method in Hefei light source[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [9]xuan ke, wang lin, li chuan, li weimin, wang jigang, bao xun, liu gongfa, xu hongliang, liu zuping. Local bump of beam closed orbit in Hefei Light Source[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [10]zhang xue-ying, xu hu-shan, sun zhi-yu, hu zheng-guo, zhang hong-bin. Monte-Carlo simulation of lifetime of light ion beams in CSRm for internal target experiments[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [11]ding shi-chuan, liu gong-fa, xuan ke, li wei-min, wang lin, wang ji-gang, li chuan, bao xun, guo wei-qun. MATLAB based beam orbit correction system of HLS storage ring[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [12]zhou xue-mei, xia jia-wen, song ming-tao, liu yong, yang jian-cheng, wu jun-xia, liu wei, mao li-jun. Particles coupling between horizontal and vertical oscillations in CSRm[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [13]liu wei, xia jia-wen, zhang wen-zhi, yang jian-cheng, liu yong, yin xue-jun, wu jun-xia, mao li-jun, zhou xue-mei. Beam acceleration with changing harmonic in CSRm[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [14]xie dong, li wei-min, wang lin, he duo-hui. Measurement of beta-function and phase using response matrix[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [15]diao cao-zheng, wang lin, xu hong-liang, li yong-jun, zhang shan-cai, feng guang-yao. Effects of alignment errors on the orbit function in HLS storage ring[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [16]li hong-tao, ding bo-nan, xie wei-ping, deng jian-jun, wang huo-ming, wang yu-juan, fu zhen, wan bu-yong, ren jing, meng wei-tao, gong de-sen, qin wei-dong, dai ying-min. 200kV/100kA low jitter ring type field distortion switch[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [17]wang jun hua, sun bao gen, li jing yi, liu zu ping, li wei min, liu jian hong, lu ping. Upgraded closed orbit distortion system and its application in Hefei light source[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(1)

    1. 温玉华. 基于DTW算法的英语发音错误自动校正系统设计. 现代电子技术. 2020(10): 124-126 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.4 %FULLTEXT: 26.4 %META: 71.0 %META: 71.0 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Lemont: 0.2 %Lemont: 0.2 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 1.4 %[]: 1.4 %上海: 1.2 %上海: 1.2 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 2.1 %兰州: 2.1 %北京: 21.5 %北京: 21.5 %台州: 0.6 %台州: 0.6 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.1 %天津: 0.1 %宣城: 0.3 %宣城: 0.3 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.5 %深圳: 0.5 %湖州: 0.5 %湖州: 0.5 %漯河: 0.8 %漯河: 0.8 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %芝加哥: 0.3 %芝加哥: 0.3 %衢州: 0.4 %衢州: 0.4 %西宁: 40.3 %西宁: 40.3 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.7 %运城: 0.7 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他ChinaIndiaLemontTaiwan, ChinaUnited States[]上海东莞中山临汾丹东兰州北京台州合肥哥伦布大连天津宣城广州张家口成都新乡晋城普洱杭州武汉沈阳深圳湖州漯河石家庄秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城重庆长沙黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (631) PDF downloads(74) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return