Li Yunlong, Yang Haifeng, Yi Xuan, et al. Benchmark experiment and analysis of JMCT on nuclear critical safety[J]. High Power Laser and Particle Beams, 2017, 29: 016007. doi: 10.11884/HPLPB201729.160212
Citation: Gao Jiao, Ding Wenjie, Huang Hongwen, et al. Investigation on the application of microtube and shell heat exchanger in energy conversion cycle[J]. High Power Laser and Particle Beams, 2023, 35: 116001. doi: 10.11884/HPLPB202335.230102

Investigation on the application of microtube and shell heat exchanger in energy conversion cycle

doi: 10.11884/HPLPB202335.230102
  • Received Date: 2023-04-25
  • Accepted Date: 2023-08-17
  • Rev Recd Date: 2023-07-26
  • Available Online: 2023-10-20
  • Publish Date: 2023-11-11
  • Print circuit heat exchanger (PCHE) is widely used in the present supercritical carbon dioxide (S-CO2) Brayton cycle to support its superiority in compactness when compared with other energy conversion cycles. The maintenance and overhaul of PCHE are hard to be carried out when leakage and fouling appear because of the integral structure of the core. A microtube and shell heat exchanger (MSTE) is proposed in this research. The structure of the MSTE is similar to that of the conventional shell-and-tube heat exchanger except that the tube diameter is reduced to microchannel level. The cross-section area of the flow channel in MSTE takes more counts than that in PCHE, thus the volume and weight of MSTE can be reduced by more than 30% when compared with PCHE under typical design conditions of recuperator and precooler. Sensitivity analysis results show that if the designed recuperator and precooler with MSTE structure are adopted, the inlet temperature of compressor changes less than 1 ℃ when the hot or cold inlet temperature of recuperator increased by about 20 ℃. It can be concluded from the analysis results that the heat transfer capacity of MSTE is sufficient to adjust the general working condition fluctuations of the energy conversion cycle.
  • [1]
    Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation: a review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
    [2]
    Liu Yaping, Wang Ying, Huang Diangui. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. doi: 10.1016/j.energy.2019.115900
    [3]
    Neises T, Turchi C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49: 1187-1196. doi: 10.1016/j.egypro.2014.03.128
    [4]
    Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
    [5]
    McCormack D. The application of printed circuit heat exchanger technology in the pebble bed modular reactor demonstration plant[C]//ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2001.
    [6]
    Chai Lei, Tassou S A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles[J]. Thermal Science and Engineering Progress, 2020, 18: 100543. doi: 10.1016/j.tsep.2020.100543
    [7]
    Chu Wenxiao, Li Xionghui, Ma Ting, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. doi: 10.1016/j.ijheatmasstransfer.2017.05.059
    [8]
    Pandey V, Kumar P, Dutta P. Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sCO2 Brayton cycle[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110091. doi: 10.1016/j.rser.2020.110091
    [9]
    Wu Pan, Ma Yunduo, Gao Chuntian, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
    [10]
    White M T, Bianchi G, Chai Lei, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
    [11]
    Kwon J S, Son S, Heo J Y, et al. Compact heat exchangers for supercritical CO2 power cycle application[J]. Energy Conversion and Management, 2020, 209: 112666. doi: 10.1016/j.enconman.2020.112666
    [12]
    Chordia L, Portnoff M A, Green E. High temperature heat exchanger design and fabrication for systems with large pressure differentials[R]. Pittsburgh: Thar Energy LLC, 2017.
    [13]
    Chordia L, Green E, Li Danyang, et al. Development of modular, low-cost, high-temperature recuperators for the sCO2 power cycles[C]//2016 University Turbine Systems Research Project Review Meeting. 2016.
    [14]
    Deserrann D, Zagarol M, Crai D, et al. Performance testing of a high effectiveness recuperator for high capacity turbo-Brayton cryocoolers[C]//Proceedings of the 19th International Cryocooler Conference. 2016: 447-454.
    [15]
    Jiang Yuan, Liese E, Zitney S E, et al. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle[J]. Applied Energy, 2018, 216: 634-648. doi: 10.1016/j.apenergy.2018.02.082
    [16]
    徐哲, 张明辉, 段天应, 等. 超临界二氧化碳在印刷电路板式换热器内的流动换热特性研究[J]. 原子能科学技术, 2021, 55(5):849-855 doi: 10.7538/yzk.2020.youxian.0411

    Xu Zhe, Zhang Minghui, Duan Tianying, et al. Flow and heat transfer characteristic study of supercritical CO2 in printed circuit heat exchanger[J]. Atomic Energy Science and Technology, 2021, 55(5): 849-855 doi: 10.7538/yzk.2020.youxian.0411
    [17]
    张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院工程热物理研究所, 2020

    Zhang Huzhong. Study on the thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020
    [18]
    Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [19]
    Son S, Heo J Y, Lee J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
    [20]
    Cui Xinying, Xiang Mengru, Guo Jiangfeng, et al. Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination[J]. The Journal of Supercritical Fluids, 2019, 152: 104560. doi: 10.1016/j.supflu.2019.104560
  • Relative Articles

    [1]Tan Xiao, Deng Li, Zhang Lingyu, Li Rui, Fu Yuanguang, Shi Dunfu, Liu Peng, Yang Chao. Development and tests of functions of proton, low-energy photon and electron transport in JMCT3.0 Monte Carlo particle transport program[J]. High Power Laser and Particle Beams, 2024, 36(9): 096002. doi: 10.11884/HPLPB202436.240117
    [2]Ye Yaoxin, Bao Pengfei, Zhao Jun. Application and quantitative verification of JMCT in engineering design of improved Chinese pressurized reactor CPR1000[J]. High Power Laser and Particle Beams, 2023, 35(12): 126001. doi: 10.11884/HPLPB202335.230016
    [3]Peng Lianghui, Yang Bo, Tang Chuntao, Fei Jingran, Bi Guangwen, Yang Weiyan, Shen Zhirui, Xiao Wei, Shen Jingwen, Liu Peng, Zhang Mingwan. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34(2): 026002. doi: 10.11884/HPLPB202234.210372
    [4]Bao Pengfei, Gong Yi, Wang Chao. Calculation of radial power distribution of the UO2 pellet with JMCT-JBURN[J]. High Power Laser and Particle Beams, 2022, 34(2): 026011. doi: 10.11884/HPLPB202234.210265
    [5]Shi Bo, Liu Xiaobo. The validation and calculation of highly enriched uranium models in JMCT[J]. High Power Laser and Particle Beams, 2022, 34(2): 026008. doi: 10.11884/HPLPB202234.210352
    [6]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [7]Zhu Jianyu, Li Rui, Huang Meng, Xu Xuefeng. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30(2): 026003. doi: 10.11884/HPLPB201830.170256
    [8]Huang Huan, Huang Hongwen, Guo Haibing. Coupled neutronics and thermal-hydraulics based on JMCT and FLUENT[J]. High Power Laser and Particle Beams, 2018, 30(10): 106002. doi: 10.11884/HPLPB201830.180012
    [9]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [10]Liu Peng, Shi Dunfu, Li Kang, Deng Li. Researchand validation on coupling method of JMCT and subchannel code[J]. High Power Laser and Particle Beams, 2018, 30(1): 016010. doi: 10.11884/HPLPB201830.170252
    [11]Sun Shiqiao, Pan Ziwen, Li Mengke, Zhou Yidong. Study of reactor criticality and kinetics calculation methods based on Geant4[J]. High Power Laser and Particle Beams, 2017, 29(05): 056007. doi: 10.11884/HPLPB201729.160413
    [12]Shi Dunfu, Li Kang, Qin Guiming, Liu Xiongguo. Coupling of Monte-Carlo code JMCT and sub-channel thermal-hydraulics code COBRA-EN[J]. High Power Laser and Particle Beams, 2017, 29(03): 036007. doi: 10.11884/HPLPB201729.160383
    [13]Li Rui, Li Gang, Zhang Baoyin, Deng Li. Implement of reactivity perturbation on JMCT[J]. High Power Laser and Particle Beams, 2017, 29(05): 056003. doi: 10.11884/HPLPB201729.160397
    [14]Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002
    [15]Li Gang, Zhang Baoyin, Deng Li, Hu Zehua, Ma Yan. Development of Monte Carlo particle transport code JMCT[J]. High Power Laser and Particle Beams, 2013, 25(01): 158-162. doi: 10.3788/HPLPB20132501.0158
    [16]Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970
    [17]Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006
    [18]Shangguan Danhua, Li Gang, Zhang Baoyin, Deng Li. Design of sampling tools for Monte Carlo particle transport code JMCT[J]. High Power Laser and Particle Beams, 2012, 24(12): 2955-2958. doi: 10.3788/HPLPB20122412.2955
    [19]Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015
    [20]chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
  • Cited by

    Periodical cited type(3)

    1. 周梦飞,吴晋营,邵增,申鹏飞,杨海峰. RMC程序临界安全基准校验分析. 现代应用物理. 2023(04): 110-115 .
    2. 刘晓波,胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-Ⅷ.0核数据库. 强激光与粒子束. 2022(02): 18-22 . 本站查看
    3. 史博,刘晓波. JMCT的高浓铀模型验证计算. 强激光与粒子束. 2022(02): 48-54 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.5 %FULLTEXT: 24.5 %META: 71.1 %META: 71.1 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.2 %其他: 0.2 %China: 0.7 %China: 0.7 %Hanoi: 1.5 %Hanoi: 1.5 %India: 0.1 %India: 0.1 %Japan: 0.1 %Japan: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %京畿道: 0.2 %京畿道: 0.2 %北京: 15.4 %北京: 15.4 %南京: 0.1 %南京: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %天津: 0.2 %天津: 0.2 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.2 %张家口: 0.2 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %眉山: 0.2 %眉山: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %苏州: 0.2 %苏州: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 50.4 %西宁: 50.4 %西安: 1.1 %西安: 1.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿坝: 0.1 %阿坝: 0.1 %韩国大邱: 0.1 %韩国大邱: 0.1 %其他其他ChinaHanoiIndiaJapanTaiwan, ChinaUnited States[]上海中山临汾丹东京畿道北京南京咸阳哈尔科夫天津宣城巴音郭楞广州张家口德黑兰成都晋城普洱杭州武汉济南海口深圳漯河眉山福州秦皇岛纽瓦克芒廷维尤苏州衢州西宁西安贵阳运城郑州重庆金华长沙长治阳泉阿坝韩国大邱

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (457) PDF downloads(67) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return