Citation: | Gao Jiao, Ding Wenjie, Huang Hongwen, et al. Investigation on the application of microtube and shell heat exchanger in energy conversion cycle[J]. High Power Laser and Particle Beams, 2023, 35: 116001. doi: 10.11884/HPLPB202335.230102 |
[1] |
Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation: a review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
|
[2] |
Liu Yaping, Wang Ying, Huang Diangui. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. doi: 10.1016/j.energy.2019.115900
|
[3] |
Neises T, Turchi C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49: 1187-1196. doi: 10.1016/j.egypro.2014.03.128
|
[4] |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
|
[5] |
McCormack D. The application of printed circuit heat exchanger technology in the pebble bed modular reactor demonstration plant[C]//ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2001.
|
[6] |
Chai Lei, Tassou S A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles[J]. Thermal Science and Engineering Progress, 2020, 18: 100543. doi: 10.1016/j.tsep.2020.100543
|
[7] |
Chu Wenxiao, Li Xionghui, Ma Ting, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. doi: 10.1016/j.ijheatmasstransfer.2017.05.059
|
[8] |
Pandey V, Kumar P, Dutta P. Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sCO2 Brayton cycle[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110091. doi: 10.1016/j.rser.2020.110091
|
[9] |
Wu Pan, Ma Yunduo, Gao Chuntian, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
|
[10] |
White M T, Bianchi G, Chai Lei, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
|
[11] |
Kwon J S, Son S, Heo J Y, et al. Compact heat exchangers for supercritical CO2 power cycle application[J]. Energy Conversion and Management, 2020, 209: 112666. doi: 10.1016/j.enconman.2020.112666
|
[12] |
Chordia L, Portnoff M A, Green E. High temperature heat exchanger design and fabrication for systems with large pressure differentials[R]. Pittsburgh: Thar Energy LLC, 2017.
|
[13] |
Chordia L, Green E, Li Danyang, et al. Development of modular, low-cost, high-temperature recuperators for the sCO2 power cycles[C]//2016 University Turbine Systems Research Project Review Meeting. 2016.
|
[14] |
Deserrann D, Zagarol M, Crai D, et al. Performance testing of a high effectiveness recuperator for high capacity turbo-Brayton cryocoolers[C]//Proceedings of the 19th International Cryocooler Conference. 2016: 447-454.
|
[15] |
Jiang Yuan, Liese E, Zitney S E, et al. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle[J]. Applied Energy, 2018, 216: 634-648. doi: 10.1016/j.apenergy.2018.02.082
|
[16] |
徐哲, 张明辉, 段天应, 等. 超临界二氧化碳在印刷电路板式换热器内的流动换热特性研究[J]. 原子能科学技术, 2021, 55(5):849-855 doi: 10.7538/yzk.2020.youxian.0411
Xu Zhe, Zhang Minghui, Duan Tianying, et al. Flow and heat transfer characteristic study of supercritical CO2 in printed circuit heat exchanger[J]. Atomic Energy Science and Technology, 2021, 55(5): 849-855 doi: 10.7538/yzk.2020.youxian.0411
|
[17] |
张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院工程热物理研究所, 2020
Zhang Huzhong. Study on the thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020
|
[18] |
Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004.
|
[19] |
Son S, Heo J Y, Lee J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
|
[20] |
Cui Xinying, Xiang Mengru, Guo Jiangfeng, et al. Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination[J]. The Journal of Supercritical Fluids, 2019, 152: 104560. doi: 10.1016/j.supflu.2019.104560
|
[1] | Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001. doi: 10.11884/HPLPB202436.240105 |
[2] | Luo Yong, Pan Qiwen, Yang Shangdong, Gu Zhixing. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35(7): 076003. doi: 10.11884/HPLPB202335.220369 |
[3] | Li Chen, Han Ruoyu, Geng Jinyue, Yuan Wei, Cao Yuchen, Ouyang Jiting. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075014. doi: 10.11884/HPLPB202234.220007 |
[4] | Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075002. doi: 10.11884/HPLPB202234.210433 |
[5] | Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340 |
[6] | Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002. doi: 10.11884/HPLPB201830.170478 |
[7] | Jiang Zhumin, Zhao Wenbo, Wang Jinyu, Sun Wei, Wang Liangzi. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(06): 066003. doi: 10.11884/HPLPB201729.160279 |
[8] | Yan Honghao, Zhang Xiaofei, Zhao Bibo, Zhao Tiejun, Li Xiaojie. Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation[J]. High Power Laser and Particle Beams, 2017, 29(08): 084101. doi: 10.11884/HPLPB201729.170074 |
[9] | Wang Chao, Li Xiaoyuan, Luo Qing, Ji Fang, Hu Surong, Wei Qilong, Zhang Yunfei, Huang Wen, Tang Guangping, He Jianguo. Dispersion of SiO2 nanoparticles in nonaqueous solvent with surfactant[J]. High Power Laser and Particle Beams, 2015, 27(02): 024155. doi: 10.11884/HPLPB201527.024155 |
[10] | Song Xiaozong, Gong Jun. Properties of ultraviolet-visible beam propagation in TiO2 nanoparticle colloid[J]. High Power Laser and Particle Beams, 2015, 27(02): 024110. doi: 10.11884/HPLPB201527.024110 |
[11] | Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008 |
[12] | Li Xiulong, Wan Yongjian, Xu Qinglan, Zhang Yang, Luo Yinchuan, Zhang Rongzhu. Removal effects of waterjet particle impinging in ductile manner[J]. High Power Laser and Particle Beams, 2014, 26(05): 051007. doi: 10.11884/HPLPB201426.051007 |
[13] | Ma Xun, Deng Jianjun, Jiang Ping, Yuan Jianqiang, Liu Jinfeng, Liu Hongwei, Wang Lingyun, Li Hongtao. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26(01): 010201. doi: 10.3788/HPLPB201426.010201 |
[14] | Zhang Lei, Li Zhongguo, Nie Zhongquan, Yang Junyi, Song Yinglin. Study of excited-state absorption of C70/toluene solution using time-resolved non-degenerate pump-probe system[J]. High Power Laser and Particle Beams, 2013, 25(02): 495-499. doi: 10.3788/HPLPB20132502.0495 |
[15] | Chen Hua, Tang Wenhui, Ran Xianwen, Xu Zhihong, Zhou Hao, Xu Binbin. Three-dimensional smoothed particle hydrodynamics numerical simulation of laser irradiating columnar aluminum target[J]. High Power Laser and Particle Beams, 2012, 24(12): 2802-2806. doi: 10.3788/HPLPB20122412.2802 |
[16] | Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479 |
[17] | gong ding, han feng, wang jian-guo. 2D hydrodynamic simulation of GaAs metal-semiconductor-field-effect-transistor[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[18] | wang gang-hua, hu xi-jing, kan ming-xuan. Simulation of magnetohydrodynamics for plasma jetting on wire pinch[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- . |
[19] | ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- . |
1. | 宋孝宗,姚统,徐国敏. TiO_2纳米颗粒胶体活化系统设计及流场仿真分析. 兰州理工大学学报. 2020(03): 75-80 . ![]() | |
2. | 徐国敏,戴旭杰,姚统,宋孝宗. 余弦光-液耦合喷嘴参数优化及射流抛光实验. 现代制造工程. 2019(05): 52-56 . ![]() | |
3. | 张航航,宋孝宗. 矩形光液耦合喷嘴的流场特性分析. 制造业自动化. 2019(12): 31-35 . ![]() |