Citation: | Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103 |
[1] |
Tan Zhikuang, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
|
[2] |
Liu Yucheng, Zhang Yunxia, Zhao Kui, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30: 1707314. doi: 10.1002/adma.201707314
|
[3] |
Xing Guichuan, Mathews N, Sun Shuangyong, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167
|
[4] |
Gao Ge, Xi Qiaoyue, Zhou Hua, et al. Novel inorganic perovskite quantum dots for photocatalysis[J]. Nanoscale, 2017, 9(33): 12032-12038. doi: 10.1039/C7NR04421F
|
[5] |
Li Ying, Shi Zhifeng, Lei Lingzhi, et al. Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors[J]. ACS Photonics, 2018, 5(6): 2524-2532. doi: 10.1021/acsphotonics.8b00348
|
[6] |
Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056. doi: 10.1038/ncomms9056
|
[7] |
Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning[J]. Nano Letters, 2015, 15(8): 5191-5199. doi: 10.1021/acs.nanolett.5b01430
|
[8] |
Mojiri A, Taylor R, Thomsen E, et al. Spectral beam splitting for efficient conversion of solar energy—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 654-663. doi: 10.1016/j.rser.2013.08.026
|
[9] |
Kedem N, Brenner T M, Kulbak M, et al. Light-induced increase of electron diffusion length in a p-n junction type CH3NH3PbBr3 perovskite solar cell[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2469-2476. doi: 10.1021/acs.jpclett.5b00889
|
[10] |
Kinoshita T, Nonomura K, Jeon N J, et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells[J]. Nature Communications, 2015, 6: 8834. doi: 10.1038/ncomms9834
|
[11] |
Zohar A, Kulbak M, Levine I, et al. What limits the open-circuit voltage of bromide perovskite-based solar cells?[J]. ACS Energy Letters, 2019, 4(1): 1-7. doi: 10.1021/acsenergylett.8b01920
|
[12] |
Wang Qi, Wu Wenzhi. Temperature and excitation wavelength-dependent photoluminescence of CH3NH3PbBr3 crystal[J]. Optics Letters, 2018, 43(20): 4923-4926. doi: 10.1364/OL.43.004923
|
[13] |
Yu Hailong, Wu Wenzhi, Wang Qi, et al. Unusual luminescence and its decay behavior of CH3NH3PbBr3 single crystals at orthorhombic phase[J]. Materials Today Physics, 2022, 22: 100621. doi: 10.1016/j.mtphys.2022.100621
|
[14] |
Zhang Feng, Zhong Haizheng, Chen Cheng, et al. Brightly luminescent and color-tunable colloidal CH3NH3Pb X3 ( X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
|
[15] |
Siddique Z, Payne J L, Irvine J T S, et al. Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3- x Cl x ) perovskites powders[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(21): 19415-19428. doi: 10.1007/s10854-020-04475-4
|
[16] |
Liu Shuo, Jiao Shujie, Lu Hongliang, et al. Cryogenic photoluminescence study on perovskite MAPbBr3 single crystals[J]. ECS Journal of Solid State Science and Technology, 2021, 10: 046003. doi: 10.1149/2162-8777/abf8fd
|
[17] |
Ding Jianxu, Zhao Ying, Du Songjie, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916. doi: 10.1007/s10853-017-0995-8
|
[18] |
Rong Shanshan, Xiao Yequan, Jiang Jiexuan, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. doi: 10.1021/acs.jpcc.0c01959
|
[19] |
Zuo Zhiyuan, Ding Jianxu, Zhao Ying, et al. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 684-689. doi: 10.1021/acs.jpclett.6b02812
|
[20] |
Xie Aozhen, Nguyen T H, Hettiarachchi C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273. doi: 10.1021/acs.jpcc.8b03622
|
[21] |
Savenije T J, Ponseca C S Jr, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2189-2194. doi: 10.1021/jz500858a
|
[22] |
Wu Ruirui, Wang Qi, Yang Sen, et al. Enhanced thermal stability of exciton recombination in CsPbI3 perovskite nanocrystals via zinc alloying[J]. Journal of Alloys and Compounds, 2021, 857: 157574. doi: 10.1016/j.jallcom.2020.157574
|
[23] |
Hu Qichuan, Yu Hailong, Gong Shunfa, et al. One-dimensional luminescent tetrabutylammonium lead halide perovskite synthesized with deep eutectic solvents[J]. Journal of Materials Chemistry C, 2022, 10(15): 6002-6008. doi: 10.1039/D2TC00382A
|
[24] |
Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods[J]. Applied Physics Letters, 2007, 90: 093104. doi: 10.1063/1.2696687
|
[25] |
Wu Lifang, Zhang Minmin, Yang Sen, et al. Spectral and dynamic analysis of CsPbBr3 perovskite nanocrystals with enhanced water stability using sodium passivation[J]. Journal of Alloys and Compounds, 2021, 889: 161721. doi: 10.1016/j.jallcom.2021.161721
|
[1] | Zhou Hongbing, Zhang Haoyu, Li Min, Feng Xi, Xie Lianghua, Liu Yu, Chu Qiuhui, Yan Yuefang, Tao Rumao, Lin Honghuan, Wang Jianjun, Yan Lixin, Jing Feng. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36(6): 061001. doi: 10.11884/HPLPB202436.230426 |
[2] | Liu Jiaying, Li Ziqiang, Yang Ran, Zou Fan, Yang Xu, Zhou Xin, Pan Ziting, Pan Likang, Li Yuting, Jiang Jiali, Li Feng, Geng Chao, Li Xinyang. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35(4): 041003. doi: 10.11884/HPLPB202335.220323 |
[3] | Gao Heng, Li Binglin, Yang Yifeng, He Bing. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35(4): 041009. doi: 10.11884/HPLPB202335.220285 |
[4] | Long Jinhu, Su Rongtao, Chang Hongxiang, Hou Tianyue, Chang Qi, Jiang Min, Zhang Jiayi, Ma Yanxing, Ma Pengfei, Zhou Pu. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008. doi: 10.11884/HPLPB202335.220258 |
[5] | Tan Qilong, Zhang Xia, Kang Hu, Peng Zhiqing, Li Xiaowei, Yang Mochou, Feng Guoying. Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole[J]. High Power Laser and Particle Beams, 2022, 34(5): 059001. doi: 10.11884/HPLPB202234.220062 |
[6] | Ma Pengfei, Wang Xiaolin, Su Rongtao, Ma Yanxing, Xu Xiaoyong, Zhou Pu, Liu Zejin. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 2016, 28(04): 040102. doi: 10.11884/HPLPB201628.120102 |
[7] | Ma Yi, Yan Hong, Tian Fei, Sun Yinhong, Zhao Lei, Wang Shufeng, Xie Gengcheng, Li Tenglong, Wang Xiaojun, Liang Xiaobao, Wang Yanshan, Ran Huanhuan, Peng Wanjing, Ke Weiwei, Feng Yujun, Tang Chun, Zhang Kai, Gao Qingsong. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(04): 040101. doi: 10.11884/HPLPB201527.040101 |
[8] | Ji Xiang, Wang Xiaolin, Zhou Pu, Su Rongtao, Yuan Xiangyu, Lu Qisheng, Zhao Yijun. Passive coherent combination of all-fiber multichannel laser based on optical feed-back loop cavity[J]. High Power Laser and Particle Beams, 2014, 26(01): 011002. doi: 10.3788/HPLPB201426.011002 |
[9] | Su Rongtao, Zhou Pu, Wang Xiaolin, Ma Yanxing, Xu Xiaojun. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(11): 110101. doi: 10.11884/HPLPB201426.110101 |
[10] | Jiang Man, Xiao Hu, Zhou Pu, Wang Xiaolin, Liu Zejin. High power self-organized coherent beam combination of 1018 nm Yb-doped fiber lasers[J]. High Power Laser and Particle Beams, 2013, 25(09): 2219-2222. doi: 10.3788/HPLPB20132509.2219 |
[11] | Ji Xiang, Zhou Pu, Wang Xiaolin, Lu Qisheng, Zhao Yijun. Self-organized coherent combination of multichannel fiber lasers based on power coupler[J]. High Power Laser and Particle Beams, 2013, 25(03): 607-610. doi: 10.3788/HPLPB20132503.0607 |
[12] | Wang Detian, Zhou Weijun, Wen Weifeng, Peng Qixian, Li Zeren, Hu Wenhua, Li Zhongjian. Coherent combination of fiber lasers using heterodyne method[J]. High Power Laser and Particle Beams, 2013, 25(05): 1125-1128. doi: 10.3788/HPLPB20132505.1125 |
[13] | Zhu Yadong, Xiao Hu, Wang Xiaolin, Ma Yanxing, Zhou Pu. Influence of frequency components on self-organized coherent combination of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 33-38. |
[14] | Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290 |
[15] | lei bing, wang ling, feng ying. Coherent beam combining of fiber lasers based on common ring cavity coupling configuration[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- . |
[16] | ma yanxing, wang xiaolin, zhou pu, ma haotong, zhao haichuan, xu xiaojun, si lei, liu zejin, zhao yijun. Coherent beam combination of fiber laser array with multi-dithering[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- . |
[17] | zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[18] | zhou pu, hou jing, chen zi-lun, liu ze-jin. Experimental study on coherent combining of two self-organized fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[19] | zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[20] | xiao rui, hou jing, jiang zong-fu, lu qi-sheng. Coherent combining and closed loop controlling of two fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- . |