Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259
Citation: Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103

Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder

doi: 10.11884/HPLPB202335.230103
  • Received Date: 2023-04-25
  • Accepted Date: 2023-10-17
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-21
  • Publish Date: 2023-11-11
  • In this work, the temperature-dependent behavior of CH3NH3PbBr3 (MAPbBr3) crystal powder is experimentally investigated using steady-state photoluminescence (PL) spectroscopy. Under 405 nm continuous-wave laser excitation, the fluorescence peak is at 560 nm with a full width at half maximum of 123 meV. There is a good linear increase in the luminescence intensity with increasing pump laser fluence, which indicates induced single-photon absorption. The MAPbBr3 crystal powder-induced PL exhibits different temperature-dependent behaviors at temperatures ranging from 80−310 K. As the temperature increases, the photon energy of the line width gets greater and the PL integral intensity gradually decreases because of the enhanced exciton phonon interaction. The peak of the PL spectrum shows a linear blue shift at 80−145 K. There is a very shallow slot around 150 K, while the peak position of the spectrum remains almost constant when the temperature exceeds 150 K. These temperature-dependent induced PL behaviors are mainly due to the contribution of phase transition and thermal expansion from orthogonal to tetragonal phases occurring at around 150 K. In addition, exciton binding energies of about 49.8 meV and longitudinal optical phonon energies of about 60.4 meV are derived from the temperature dependent PL experimental dataset.
  • [1]
    Tan Zhikuang, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
    [2]
    Liu Yucheng, Zhang Yunxia, Zhao Kui, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30: 1707314. doi: 10.1002/adma.201707314
    [3]
    Xing Guichuan, Mathews N, Sun Shuangyong, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167
    [4]
    Gao Ge, Xi Qiaoyue, Zhou Hua, et al. Novel inorganic perovskite quantum dots for photocatalysis[J]. Nanoscale, 2017, 9(33): 12032-12038. doi: 10.1039/C7NR04421F
    [5]
    Li Ying, Shi Zhifeng, Lei Lingzhi, et al. Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors[J]. ACS Photonics, 2018, 5(6): 2524-2532. doi: 10.1021/acsphotonics.8b00348
    [6]
    Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056. doi: 10.1038/ncomms9056
    [7]
    Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning[J]. Nano Letters, 2015, 15(8): 5191-5199. doi: 10.1021/acs.nanolett.5b01430
    [8]
    Mojiri A, Taylor R, Thomsen E, et al. Spectral beam splitting for efficient conversion of solar energy—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 654-663. doi: 10.1016/j.rser.2013.08.026
    [9]
    Kedem N, Brenner T M, Kulbak M, et al. Light-induced increase of electron diffusion length in a p-n junction type CH3NH3PbBr3 perovskite solar cell[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2469-2476. doi: 10.1021/acs.jpclett.5b00889
    [10]
    Kinoshita T, Nonomura K, Jeon N J, et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells[J]. Nature Communications, 2015, 6: 8834. doi: 10.1038/ncomms9834
    [11]
    Zohar A, Kulbak M, Levine I, et al. What limits the open-circuit voltage of bromide perovskite-based solar cells?[J]. ACS Energy Letters, 2019, 4(1): 1-7. doi: 10.1021/acsenergylett.8b01920
    [12]
    Wang Qi, Wu Wenzhi. Temperature and excitation wavelength-dependent photoluminescence of CH3NH3PbBr3 crystal[J]. Optics Letters, 2018, 43(20): 4923-4926. doi: 10.1364/OL.43.004923
    [13]
    Yu Hailong, Wu Wenzhi, Wang Qi, et al. Unusual luminescence and its decay behavior of CH3NH3PbBr3 single crystals at orthorhombic phase[J]. Materials Today Physics, 2022, 22: 100621. doi: 10.1016/j.mtphys.2022.100621
    [14]
    Zhang Feng, Zhong Haizheng, Chen Cheng, et al. Brightly luminescent and color-tunable colloidal CH3NH3Pb X3 ( X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
    [15]
    Siddique Z, Payne J L, Irvine J T S, et al. Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3- x Cl x ) perovskites powders[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(21): 19415-19428. doi: 10.1007/s10854-020-04475-4
    [16]
    Liu Shuo, Jiao Shujie, Lu Hongliang, et al. Cryogenic photoluminescence study on perovskite MAPbBr3 single crystals[J]. ECS Journal of Solid State Science and Technology, 2021, 10: 046003. doi: 10.1149/2162-8777/abf8fd
    [17]
    Ding Jianxu, Zhao Ying, Du Songjie, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916. doi: 10.1007/s10853-017-0995-8
    [18]
    Rong Shanshan, Xiao Yequan, Jiang Jiexuan, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. doi: 10.1021/acs.jpcc.0c01959
    [19]
    Zuo Zhiyuan, Ding Jianxu, Zhao Ying, et al. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 684-689. doi: 10.1021/acs.jpclett.6b02812
    [20]
    Xie Aozhen, Nguyen T H, Hettiarachchi C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273. doi: 10.1021/acs.jpcc.8b03622
    [21]
    Savenije T J, Ponseca C S Jr, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2189-2194. doi: 10.1021/jz500858a
    [22]
    Wu Ruirui, Wang Qi, Yang Sen, et al. Enhanced thermal stability of exciton recombination in CsPbI3 perovskite nanocrystals via zinc alloying[J]. Journal of Alloys and Compounds, 2021, 857: 157574. doi: 10.1016/j.jallcom.2020.157574
    [23]
    Hu Qichuan, Yu Hailong, Gong Shunfa, et al. One-dimensional luminescent tetrabutylammonium lead halide perovskite synthesized with deep eutectic solvents[J]. Journal of Materials Chemistry C, 2022, 10(15): 6002-6008. doi: 10.1039/D2TC00382A
    [24]
    Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods[J]. Applied Physics Letters, 2007, 90: 093104. doi: 10.1063/1.2696687
    [25]
    Wu Lifang, Zhang Minmin, Yang Sen, et al. Spectral and dynamic analysis of CsPbBr3 perovskite nanocrystals with enhanced water stability using sodium passivation[J]. Journal of Alloys and Compounds, 2021, 889: 161721. doi: 10.1016/j.jallcom.2021.161721
  • Relative Articles

    [1]Zhou Hongbing, Zhang Haoyu, Li Min, Feng Xi, Xie Lianghua, Liu Yu, Chu Qiuhui, Yan Yuefang, Tao Rumao, Lin Honghuan, Wang Jianjun, Yan Lixin, Jing Feng. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36(6): 061001. doi: 10.11884/HPLPB202436.230426
    [2]Liu Jiaying, Li Ziqiang, Yang Ran, Zou Fan, Yang Xu, Zhou Xin, Pan Ziting, Pan Likang, Li Yuting, Jiang Jiali, Li Feng, Geng Chao, Li Xinyang. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35(4): 041003. doi: 10.11884/HPLPB202335.220323
    [3]Gao Heng, Li Binglin, Yang Yifeng, He Bing. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35(4): 041009. doi: 10.11884/HPLPB202335.220285
    [4]Long Jinhu, Su Rongtao, Chang Hongxiang, Hou Tianyue, Chang Qi, Jiang Min, Zhang Jiayi, Ma Yanxing, Ma Pengfei, Zhou Pu. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008. doi: 10.11884/HPLPB202335.220258
    [5]Tan Qilong, Zhang Xia, Kang Hu, Peng Zhiqing, Li Xiaowei, Yang Mochou, Feng Guoying. Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole[J]. High Power Laser and Particle Beams, 2022, 34(5): 059001. doi: 10.11884/HPLPB202234.220062
    [6]Ma Pengfei, Wang Xiaolin, Su Rongtao, Ma Yanxing, Xu Xiaoyong, Zhou Pu, Liu Zejin. Coherent polarization beam combining of fiber lasers to 2 kW power-level[J]. High Power Laser and Particle Beams, 2016, 28(04): 040102. doi: 10.11884/HPLPB201628.120102
    [7]Ma Yi, Yan Hong, Tian Fei, Sun Yinhong, Zhao Lei, Wang Shufeng, Xie Gengcheng, Li Tenglong, Wang Xiaojun, Liang Xiaobao, Wang Yanshan, Ran Huanhuan, Peng Wanjing, Ke Weiwei, Feng Yujun, Tang Chun, Zhang Kai, Gao Qingsong. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(04): 040101. doi: 10.11884/HPLPB201527.040101
    [8]Ji Xiang, Wang Xiaolin, Zhou Pu, Su Rongtao, Yuan Xiangyu, Lu Qisheng, Zhao Yijun. Passive coherent combination of all-fiber multichannel laser based on optical feed-back loop cavity[J]. High Power Laser and Particle Beams, 2014, 26(01): 011002. doi: 10.3788/HPLPB201426.011002
    [9]Su Rongtao, Zhou Pu, Wang Xiaolin, Ma Yanxing, Xu Xiaojun. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(11): 110101. doi: 10.11884/HPLPB201426.110101
    [10]Jiang Man, Xiao Hu, Zhou Pu, Wang Xiaolin, Liu Zejin. High power self-organized coherent beam combination of 1018 nm Yb-doped fiber lasers[J]. High Power Laser and Particle Beams, 2013, 25(09): 2219-2222. doi: 10.3788/HPLPB20132509.2219
    [11]Ji Xiang, Zhou Pu, Wang Xiaolin, Lu Qisheng, Zhao Yijun. Self-organized coherent combination of multichannel fiber lasers based on power coupler[J]. High Power Laser and Particle Beams, 2013, 25(03): 607-610. doi: 10.3788/HPLPB20132503.0607
    [12]Wang Detian, Zhou Weijun, Wen Weifeng, Peng Qixian, Li Zeren, Hu Wenhua, Li Zhongjian. Coherent combination of fiber lasers using heterodyne method[J]. High Power Laser and Particle Beams, 2013, 25(05): 1125-1128. doi: 10.3788/HPLPB20132505.1125
    [13]Zhu Yadong, Xiao Hu, Wang Xiaolin, Ma Yanxing, Zhou Pu. Influence of frequency components on self-organized coherent combination of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 33-38.
    [14]Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290
    [15]lei bing, wang ling, feng ying. Coherent beam combining of fiber lasers based on common ring cavity coupling configuration[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [16]ma yanxing, wang xiaolin, zhou pu, ma haotong, zhao haichuan, xu xiaojun, si lei, liu zejin, zhao yijun. Coherent beam combination of fiber laser array with multi-dithering[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [17]zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [18]zhou pu, hou jing, chen zi-lun, liu ze-jin. Experimental study on coherent combining of two self-organized fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [19]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [20]xiao rui, hou jing, jiang zong-fu, lu qi-sheng. Coherent combining and closed loop controlling of two fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 73.0 %META: 73.0 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 1.4 %其他: 1.4 %China: 0.5 %China: 0.5 %Doylestown: 0.1 %Doylestown: 0.1 %Falls Church: 3.0 %Falls Church: 3.0 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Taichung: 0.1 %Taichung: 0.1 %United States: 0.0 %United States: 0.0 %[]: 1.4 %[]: 1.4 %上海: 1.4 %上海: 1.4 %上饶: 0.0 %上饶: 0.0 %东莞: 0.4 %东莞: 0.4 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.0 %丽水: 0.0 %京畿道: 0.0 %京畿道: 0.0 %保定: 0.3 %保定: 0.3 %内江: 0.1 %内江: 0.1 %北京: 4.6 %北京: 4.6 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 1.1 %南京: 1.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.7 %台州: 0.7 %合肥: 0.9 %合肥: 0.9 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %堪培拉: 0.2 %堪培拉: 0.2 %大连: 0.6 %大连: 0.6 %大阪: 0.6 %大阪: 0.6 %大阪府: 0.1 %大阪府: 0.1 %天津: 1.2 %天津: 1.2 %太原: 0.5 %太原: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.3 %巴黎: 0.3 %常德: 0.3 %常德: 0.3 %广州: 1.2 %广州: 1.2 %廊坊: 0.1 %廊坊: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.8 %张家口: 0.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %怀化: 0.4 %怀化: 0.4 %意法半: 0.0 %意法半: 0.0 %成都: 1.7 %成都: 1.7 %扬州: 0.3 %扬州: 0.3 %新泽西州: 0.0 %新泽西州: 0.0 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.1 %景德镇: 0.1 %杭州: 0.8 %杭州: 0.8 %枣庄: 0.0 %枣庄: 0.0 %桂林: 0.4 %桂林: 0.4 %武汉: 2.0 %武汉: 2.0 %汕头: 0.2 %汕头: 0.2 %江门: 0.0 %江门: 0.0 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.0 %泰安: 0.0 %济南: 0.1 %济南: 0.1 %淮南: 0.0 %淮南: 0.0 %深圳: 1.1 %深圳: 1.1 %温州: 0.0 %温州: 0.0 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湘西: 0.3 %湘西: 0.3 %湛江: 0.1 %湛江: 0.1 %漯河: 0.6 %漯河: 0.6 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %科珀斯克里斯蒂: 0.4 %科珀斯克里斯蒂: 0.4 %秦皇岛: 0.0 %秦皇岛: 0.0 %约翰内斯堡: 0.0 %约翰内斯堡: 0.0 %纽约: 0.0 %纽约: 0.0 %绵阳: 1.4 %绵阳: 1.4 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.7 %衡阳: 0.7 %衢州: 0.5 %衢州: 0.5 %襄阳: 0.1 %襄阳: 0.1 %西宁: 25.3 %西宁: 25.3 %西安: 0.3 %西安: 0.3 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 1.4 %诺沃克: 1.4 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 0.5 %运城: 0.5 %遵义: 0.1 %遵义: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %釜山: 0.2 %釜山: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 3.5 %长沙: 3.5 %长治: 0.1 %长治: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.0 %黄冈: 0.0 %其他其他ChinaDoylestownFalls ChurchSan LorenzoSeattleTaichungUnited States[]上海上饶东莞中卫临汾丹东丽水京畿道保定内江北京北海十堰南京南宁南昌南通台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布嘉兴堪培拉大连大阪大阪府天津太原娄底宁波安康宣城巴音郭楞巴黎常德广州廊坊弗吉张家口张家界徐州德州怀化意法半成都扬州新泽西州无锡昆明晋城普洱景德镇杭州枣庄桂林武汉汕头江门沈阳泰安济南淮南深圳温州湖州湘潭湘西湛江漯河漳州烟台益阳盐城石家庄福州科珀斯克里斯蒂秦皇岛约翰内斯堡纽约绵阳芒廷维尤芝加哥苏州萍乡蚌埠衡水衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙运城遵义邢台邯郸邵阳郑州鄂州重庆金华釜山长春长沙长治青岛香港香港特别行政区黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (568) PDF downloads(45) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return