Volume 35 Issue 11
Oct.  2023
Turn off MathJax
Article Contents
Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Citation: Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103

Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder

doi: 10.11884/HPLPB202335.230103
  • Received Date: 2023-04-25
  • Accepted Date: 2023-10-17
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-21
  • Publish Date: 2023-11-11
  • In this work, the temperature-dependent behavior of CH3NH3PbBr3 (MAPbBr3) crystal powder is experimentally investigated using steady-state photoluminescence (PL) spectroscopy. Under 405 nm continuous-wave laser excitation, the fluorescence peak is at 560 nm with a full width at half maximum of 123 meV. There is a good linear increase in the luminescence intensity with increasing pump laser fluence, which indicates induced single-photon absorption. The MAPbBr3 crystal powder-induced PL exhibits different temperature-dependent behaviors at temperatures ranging from 80−310 K. As the temperature increases, the photon energy of the line width gets greater and the PL integral intensity gradually decreases because of the enhanced exciton phonon interaction. The peak of the PL spectrum shows a linear blue shift at 80−145 K. There is a very shallow slot around 150 K, while the peak position of the spectrum remains almost constant when the temperature exceeds 150 K. These temperature-dependent induced PL behaviors are mainly due to the contribution of phase transition and thermal expansion from orthogonal to tetragonal phases occurring at around 150 K. In addition, exciton binding energies of about 49.8 meV and longitudinal optical phonon energies of about 60.4 meV are derived from the temperature dependent PL experimental dataset.
  • loading
  • [1]
    Tan Zhikuang, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
    [2]
    Liu Yucheng, Zhang Yunxia, Zhao Kui, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30: 1707314. doi: 10.1002/adma.201707314
    [3]
    Xing Guichuan, Mathews N, Sun Shuangyong, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167
    [4]
    Gao Ge, Xi Qiaoyue, Zhou Hua, et al. Novel inorganic perovskite quantum dots for photocatalysis[J]. Nanoscale, 2017, 9(33): 12032-12038. doi: 10.1039/C7NR04421F
    [5]
    Li Ying, Shi Zhifeng, Lei Lingzhi, et al. Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors[J]. ACS Photonics, 2018, 5(6): 2524-2532. doi: 10.1021/acsphotonics.8b00348
    [6]
    Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056. doi: 10.1038/ncomms9056
    [7]
    Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning[J]. Nano Letters, 2015, 15(8): 5191-5199. doi: 10.1021/acs.nanolett.5b01430
    [8]
    Mojiri A, Taylor R, Thomsen E, et al. Spectral beam splitting for efficient conversion of solar energy—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 654-663. doi: 10.1016/j.rser.2013.08.026
    [9]
    Kedem N, Brenner T M, Kulbak M, et al. Light-induced increase of electron diffusion length in a p-n junction type CH3NH3PbBr3 perovskite solar cell[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2469-2476. doi: 10.1021/acs.jpclett.5b00889
    [10]
    Kinoshita T, Nonomura K, Jeon N J, et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells[J]. Nature Communications, 2015, 6: 8834. doi: 10.1038/ncomms9834
    [11]
    Zohar A, Kulbak M, Levine I, et al. What limits the open-circuit voltage of bromide perovskite-based solar cells?[J]. ACS Energy Letters, 2019, 4(1): 1-7. doi: 10.1021/acsenergylett.8b01920
    [12]
    Wang Qi, Wu Wenzhi. Temperature and excitation wavelength-dependent photoluminescence of CH3NH3PbBr3 crystal[J]. Optics Letters, 2018, 43(20): 4923-4926. doi: 10.1364/OL.43.004923
    [13]
    Yu Hailong, Wu Wenzhi, Wang Qi, et al. Unusual luminescence and its decay behavior of CH3NH3PbBr3 single crystals at orthorhombic phase[J]. Materials Today Physics, 2022, 22: 100621. doi: 10.1016/j.mtphys.2022.100621
    [14]
    Zhang Feng, Zhong Haizheng, Chen Cheng, et al. Brightly luminescent and color-tunable colloidal CH3NH3Pb X3 ( X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
    [15]
    Siddique Z, Payne J L, Irvine J T S, et al. Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3- x Cl x ) perovskites powders[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(21): 19415-19428. doi: 10.1007/s10854-020-04475-4
    [16]
    Liu Shuo, Jiao Shujie, Lu Hongliang, et al. Cryogenic photoluminescence study on perovskite MAPbBr3 single crystals[J]. ECS Journal of Solid State Science and Technology, 2021, 10: 046003. doi: 10.1149/2162-8777/abf8fd
    [17]
    Ding Jianxu, Zhao Ying, Du Songjie, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916. doi: 10.1007/s10853-017-0995-8
    [18]
    Rong Shanshan, Xiao Yequan, Jiang Jiexuan, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. doi: 10.1021/acs.jpcc.0c01959
    [19]
    Zuo Zhiyuan, Ding Jianxu, Zhao Ying, et al. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 684-689. doi: 10.1021/acs.jpclett.6b02812
    [20]
    Xie Aozhen, Nguyen T H, Hettiarachchi C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273. doi: 10.1021/acs.jpcc.8b03622
    [21]
    Savenije T J, Ponseca C S Jr, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2189-2194. doi: 10.1021/jz500858a
    [22]
    Wu Ruirui, Wang Qi, Yang Sen, et al. Enhanced thermal stability of exciton recombination in CsPbI3 perovskite nanocrystals via zinc alloying[J]. Journal of Alloys and Compounds, 2021, 857: 157574. doi: 10.1016/j.jallcom.2020.157574
    [23]
    Hu Qichuan, Yu Hailong, Gong Shunfa, et al. One-dimensional luminescent tetrabutylammonium lead halide perovskite synthesized with deep eutectic solvents[J]. Journal of Materials Chemistry C, 2022, 10(15): 6002-6008. doi: 10.1039/D2TC00382A
    [24]
    Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods[J]. Applied Physics Letters, 2007, 90: 093104. doi: 10.1063/1.2696687
    [25]
    Wu Lifang, Zhang Minmin, Yang Sen, et al. Spectral and dynamic analysis of CsPbBr3 perovskite nanocrystals with enhanced water stability using sodium passivation[J]. Journal of Alloys and Compounds, 2021, 889: 161721. doi: 10.1016/j.jallcom.2021.161721
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (421) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return