Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111
Citation: Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111

Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence

doi: 10.11884/HPLPB202335.230111
  • Received Date: 2023-05-04
  • Accepted Date: 2023-07-28
  • Rev Recd Date: 2023-07-28
  • Available Online: 2023-08-18
  • Publish Date: 2023-10-08
  • Compared with other vortex beams, the perfect optical vortex (POV) beam has a more stable spatial intensity distribution because the beam radius is independent of the topological charge. In this paper, the transmission characteristics of the POV beam in slant path atmospheric turbulence are studied by means of multi-phase screen method and Fourier transform method. The influence of atmospheric turbulence on beam quality is analyzed by using beam drift and aperture average scintillation index. Then the beam quality of the POV beam and Gaussian vortex beam under the same transmission conditions is compared. The results show that POV beam has better beam stability than Gaussian vortex beam. When the topological load increases or the zenith angle decreases, the ability of POV beam to resist atmospheric turbulence increases. The resistance of POV beam to atmospheric turbulence can be improved by increasing the beam radius without changing the topological charge of the POV beam.
  • [1]
    王伟, 李晓记, 任亚萍, 等. 自由空间轨道角动量无线光通信研究进展[J]. 光通信技术, 2019, 43(4):12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003

    Wang Wei, Li Xiaoji, Ren Yaping, et al. Research progress on free space orbital angular momentum wireless optical communication[J]. Optical Communication Technology, 2019, 43(4): 12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003
    [2]
    谢友朋, 张珊, 雷霆, 等. 奇点光束复用光通信(特邀)[J]. 光通信研究, 2018(6):11-20 doi: 10.13756/j.gtxyj.2018.06.002

    Xie Youpeng, Zhang Shan, Lei Ting, et al. Singular optical beams multiplexing optical communication[J]. Study on Optical Communications, 2018(6): 11-20 doi: 10.13756/j.gtxyj.2018.06.002
    [3]
    Lukin V P, Konyaev P A, Sennikov V A. Beam spreading of vortex beams propagating in turbulent atmosphere[J]. Applied Optics, 2012, 51(10): C84-C87. doi: 10.1364/AO.51.000C84
    [4]
    Zhu Kaicheng, Zhou Guoquan, Li Xuguang, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320. doi: 10.1364/OE.16.021315
    [5]
    Yüceer M, Eyyuboglu H T, Lukin I P. Scintillations of partially coherent Laguerre Gaussian beams[J]. Applied Physics B, 2010, 101(4): 901-908. doi: 10.1007/s00340-010-4291-4
    [6]
    Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 2008, 25(1): 225-230. doi: 10.1364/JOSAA.25.000225
    [7]
    Chen B S, Pu J X. Propagation of Gauss-Bessel beams in turbulent atmosphere[J]. Chinese Physics B, 2009, 18(3): 1033-1039. doi: 10.1088/1674-1056/18/3/032
    [8]
    Kirilenko M S, Porfirev A P, Khonina S N. Comparison of propagation of vortex and non-vortex laser beams in a random medium[C]//Proceedings of the SPIE 10342, Optical Technologies for Telecommunications 2016. 2016: 103420B.
    [9]
    Yue Yang, Yan Yan, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535-543. doi: 10.1109/JPHOT.2012.2192474
    [10]
    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536. doi: 10.1364/OL.38.000534
    [11]
    Wang Le, Jiang Xincheng, Zou Li, et al. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam[J]. Journal of Modern Optics, 2019, 66(1): 87-92. doi: 10.1080/09500340.2018.1512669
    [12]
    Yang Chunyong, Lan Yue, Jiang Xiaoyu, et al. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence[J]. Optics Communications, 2020, 472: 125879. doi: 10.1016/j.optcom.2020.125879
    [13]
    Series P. Propagation data and prediction methods required for the design of Earth-space telecommunication systems[J]. Recommendation ITU-R P. 618-12, 2015.
    [14]
    Zhu Fuquan, Huang Sujuan, Shao Wei, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)[J]. Optics Communications, 2017, 396: 50-57. doi: 10.1016/j.optcom.2017.03.023
    [15]
    钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布[J]. 物理学报, 2009, 58(9):6633-6639 doi: 10.7498/aps.58.6633

    Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639 doi: 10.7498/aps.58.6633
    [16]
    Fleck Jr J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160. doi: 10.1007/BF00896333
    [17]
    Ke Xizheng, Lei Sichen. Spatial light coupled into a single-mode fiber by a Maksutov–Cassegrain antenna through atmospheric turbulence[J]. Applied Optics, 2016, 55(15): 3897-3902. doi: 10.1364/AO.55.003897
    [18]
    Siegman A E. New developments in laser resonators[C]. Proceedings of the SPIE 1224, Optical Resonators. 1990: 2-14.
    [19]
    陈鸣, 高太长, 刘磊, 等. 非Kolmogorov湍流相位屏仿真及对光束传输模拟的影响[J]. 强激光与粒子束, 2017, 29:091008 doi: 10.11884/HPLPB201729.170052

    Chen Ming, Gao Taichang, Liu Lei, et al. Influence of non-Kolmogorov turbulence phase screen based on equivalent structure constant on beam quality in transmission[J]. High Power Laser and Particle Beams, 2017, 29: 091008 doi: 10.11884/HPLPB201729.170052
  • Relative Articles

    [1]Wang Jian, Wu Jiaxin, Xie Duan, Cai Dafeng, Li Dongxia. Theoretical investigation of relativistic vortex high-order harmonics generation and manipulation[J]. High Power Laser and Particle Beams, 2023, 35(5): 051003. doi: 10.11884/HPLPB202335.220256
    [2]Zhang Bin, Tian Boyu, He Ting, Zhang Xiaomin. Beam quality analysis of solid-state zigzag tube lasers for long-distance propagation in atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081007. doi: 10.11884/HPLPB202133.210200
    [3]Lin Shuqin, Cai Yangjian, Yu Jiayi. Research progress of propagation of beams with special correlation structure in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081006. doi: 10.11884/HPLPB202133.210210
    [4]Ge Xiaolu, Wang Benyi, Guo Liping, Man Zhongsheng. Behavior of phase singularities for laser beam propagating through uplink and downlink atmospheric turbulence paths[J]. High Power Laser and Particle Beams, 2018, 30(12): 121001. doi: 10.11884/HPLPB201830.180228
    [5]Huang Shiming, Nie Jianye, Zhang Rongzhu. Influence ofpolarization direction on Vortex beam[J]. High Power Laser and Particle Beams, 2018, 30(7): 071002. doi: 10.11884/HPLPB201830.170404
    [6]Li Haoran, Fan Chengjin, Dang Jinchao, Chen Ziyang, Pu Jixiong. Focusing properties of power-exponent-phase vortex beam focused by high numerical-aperture objective[J]. High Power Laser and Particle Beams, 2018, 30(1): 011002. doi: 10.11884/HPLPB201830.170259
    [7]Wang Weiwei, Li Jinhong, Lai Yunzhong, Wei Jilin. Influence of non-Kolmogorov atmospheric turbulence on propagation factors of partially coherent Hermite-Gaussian beams[J]. High Power Laser and Particle Beams, 2014, 26(03): 031010. doi: 10.3788/HPLPB201426.031010
    [8]Li Yang, Xiang Libin, Zhang Wenxi. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy[J]. High Power Laser and Particle Beams, 2013, 25(02): 292-296. doi: 10.3788/HPLPB20132502.0292
    [9]Duan Meiling, Li Jinhong, Wei Jilin. Spreading of partially coherent Hermite-Gaussian beams in slant atmospheric turbulence[J]. High Power Laser and Particle Beams, 2013, 25(09): 2252-2256. doi: 10.3788/HPLPB20132509.2252
    [10]Wu Wuming, Yang Yi, Si Lei, Zhou Pu, Chen Jinbao. Experimental research on propagation of incoherent combined beams of fiber lasers in atmospheric turbulence[J]. High Power Laser and Particle Beams, 2013, 25(01): 3-4. doi: 10.3788/HPLPB20132501.0003
    [11]Rao Lianzhou, Lin Huichuan, Xu Guozhong. Tight focusing of J0-correlated azimuthally polarized vortex beams[J]. High Power Laser and Particle Beams, 2013, 25(08): 1945-1950. doi: 10.3788/HPLPB20132508.1945
    [12]Zheng Yulong, Ji Xiaoling. Influence of atmospheric turbulence on spreading of apertured polychromatic Gaussian Schell-model beams[J]. High Power Laser and Particle Beams, 2012, 24(02): 276-280.
    [13]huang yongping, zhang bin, dan youquan, qiao na. Changes of M2-factor for Hermite-Gaussian beams in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [14]song hongyuan, zhang tingrong, chen senhui, huang yongchao, li yantao, zhang weilin. Propagation properties of flattened Gaussian beams in gradient-index media[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [15]song hongyuan, zhang tingrong, chen senhui, huang yongchao, li yantao, zhang weilin. Propagation properties of cosine-Gaussian beams in gradient-index medium[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [16]ma liang, wu fengtie, pu jixiong. Beam propagation property of helical axicon[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [17]li chang-wei, lu bai-da. Propagation properties and spatial shaping of partially coherent cosh-Gaussian beams[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [18]liu ming-na, wang xiao-qiang, wu yi, hou zai-hong, zhang shou-chuan. Numerical simulation of backscattering of a focused laser beam in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [19]zou qi-hui, lv bai-da. Propagation properties of ultrashort pulsed Bessel-Gauss beams in free space[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [20]rao rui-zhong. Collimated laser beam in a turbulent atmosphere: Fractal structure and phase branch points[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.3 %FULLTEXT: 26.3 %META: 67.2 %META: 67.2 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %Baden: 0.1 %Baden: 0.1 %Central District: 0.1 %Central District: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.2 %[]: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 0.2 %东莞: 0.2 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九龙: 0.2 %九龙: 0.2 %亚特兰大: 0.1 %亚特兰大: 0.1 %伦敦: 0.2 %伦敦: 0.2 %保定: 0.3 %保定: 0.3 %兰州: 0.4 %兰州: 0.4 %北京: 1.6 %北京: 1.6 %南京: 1.9 %南京: 1.9 %南宁: 0.4 %南宁: 0.4 %南昌: 0.3 %南昌: 0.3 %台州: 1.5 %台州: 1.5 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.4 %太原: 0.4 %安康: 0.3 %安康: 0.3 %宜春: 0.2 %宜春: 0.2 %宣城: 0.5 %宣城: 0.5 %常州: 0.6 %常州: 0.6 %常德: 0.2 %常德: 0.2 %广州: 0.6 %广州: 0.6 %库比蒂诺: 0.5 %库比蒂诺: 0.5 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 3.1 %张家口: 3.1 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.4 %扬州: 0.4 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.5 %杭州: 1.5 %栃木: 0.1 %栃木: 0.1 %武汉: 0.7 %武汉: 0.7 %汕头: 0.3 %汕头: 0.3 %沈阳: 0.2 %沈阳: 0.2 %泸州: 0.2 %泸州: 0.2 %济南: 0.2 %济南: 0.2 %海东: 0.1 %海东: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.2 %温州: 0.2 %湖州: 0.7 %湖州: 0.7 %漯河: 0.6 %漯河: 0.6 %潜江: 0.1 %潜江: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 47.6 %芒廷维尤: 47.6 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.4 %苏州: 0.4 %蚌埠: 0.1 %蚌埠: 0.1 %衢州: 0.6 %衢州: 0.6 %西宁: 8.9 %西宁: 8.9 %西安: 1.1 %西安: 1.1 %诺沃克: 2.8 %诺沃克: 2.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.4 %运城: 1.4 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.1 %铁岭: 0.1 %银川: 0.2 %银川: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %阿什本: 0.2 %阿什本: 0.2 %青岛: 0.8 %青岛: 0.8 %鹰潭: 0.1 %鹰潭: 0.1 %黄石: 0.1 %黄石: 0.1 %其他BadenCentral DistrictSeattle[]上海东莞丹东丽水乌鲁木齐九龙亚特兰大伦敦保定兰州北京南京南宁南昌台州吉林呼和浩特哈尔滨哥伦布大连天津太原安康宜春宣城常州常德广州库比蒂诺廊坊开封张家口张家界徐州成都扬州无锡昆明晋城朝阳杭州栃木武汉汕头沈阳泸州济南海东深圳温州湖州漯河潜江烟台石家庄秦皇岛绵阳芒廷维尤芝加哥苏州蚌埠衢州西宁西安诺沃克贵阳运城连云港遵义郑州重庆铁岭银川长春长沙阿什本青岛鹰潭黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (876) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return