Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Hu Linlin, Sun Dimin, Huang Qili, et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 083004. doi: 10.11884/HPLPB202335.230114
Citation: Hu Linlin, Sun Dimin, Huang Qili, et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 083004. doi: 10.11884/HPLPB202335.230114

Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron

doi: 10.11884/HPLPB202335.230114
  • Received Date: 2023-05-05
  • Accepted Date: 2023-07-11
  • Rev Recd Date: 2023-07-10
  • Available Online: 2023-07-13
  • Publish Date: 2023-08-15
  • The design and latest experimental progress of a 105/140 GHz dual-frequency megawatt-level gyrotron for fusion applications are presented. The resonant cavity, quasi-optical mode converter and BN output window of the gyrotron adopt the design of dual-frequency sharing, the electron gun adopts the triode magnetron injection gun with dual-frequency multiplexing, and the collecting pole adopts the single-stage depressed collector. The experimental results are as follows: under the ms short-pulse condition with repetitive rate of 1 Hz, pulse powers of 710 kW at 105 GHz and 1.057 MW at 140 GHz have been achieved. The pulse width is 0.7 ms, and the total efficiency is 34% at 105 GHz and 49% at 140 GHz, respectively. Through pulse width extension and aging, the experimental results of 105 GHz/300 kW/2 s, 105 GHz/400 kW/1 s and 140 GHz/400 kW/1 s are obtained. The temperature of BN window reaches 606 ℃, 503 ℃ and 633 ℃, respectively, in the three states. The frequencies during long-pulse operations are stable, indicating that there are no parasitic modes. The experiment basically verifies the physical design of the device.
  • loading
  • [1]
    Nusinovich G S, Thumm M K A, Petelin M I. The gyrotron at 50: historical overview[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 325-381. doi: 10.1007/s10762-014-0050-7
    [2]
    Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005
    [3]
    Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875
    [4]
    Ikeda R, Kajiwara K, Nakai T, et al. Progress on performance tests of ITER gyrotrons and design of dual-frequency gyrotrons for ITER staged operation plan[J]. Nuclear Fusion, 2021, 61: 106031. doi: 10.1088/1741-4326/ac21f7
    [5]
    Hu Linlin, Sun Dimin, Huang Qili, et al. Design and preliminary test of a 105/140 GHz dual-frequency MW-level gyrotron[J]. Plasma Science and Technology, 2022, 24: 035601. doi: 10.1088/2058-6272/ac2b8f
    [6]
    Hu Linlin, Ma Guowu, Sun Dimin, et al. Development of a 28-GHz/50-kW/30-s gyrotron system for fusion application[J]. IEEE Transactions on Plasma Science, 2021, 49(4): 1468-1474. doi: 10.1109/TPS.2021.3066553
    [7]
    胡林林, 马国武, 孙迪敏, 等. 28 GHz/50 kW准光输出连续波回旋管[J]. 强激光与粒子束, 2019, 31:060101 doi: 10.11884/HPLPB201931.190139

    Hu Linlin, Ma Guowu, Sun Dimin, et al. A 28 GHz/50 kW continuous wave gyrotron with quasi-optical output[J]. High Power Laser and Particle Beams, 2019, 31: 060101 doi: 10.11884/HPLPB201931.190139
    [8]
    Sun Dimin, Ma Guowu, Huang Qili, et al. Recent results of 28 GHz 400 kW long pulse gyrotrons at IAE-CAEP[C]//2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). 2021: 1-2.
    [9]
    胡林林, 孙迪敏, 黄麒力, 等. 105/140GHz双频兆瓦回旋管实现1.0MW脉冲输出[J]. 强激光与粒子束, 2023, 35:023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [10]
    黄麒力, 孙迪敏, 马国武, 等. 双频回旋管内置准光模式变换器设计[J]. 强激光与粒子束, 2020, 32:053001 doi: 10.11884/HPLPB202032.190446

    Huang Qili, Sun Dimin, Ma Guowu, et al. Design of quasi-optical mode converter for dual-frequency gyrotron[J]. High Power Laser and Particle Beams, 2020, 32: 053001 doi: 10.11884/HPLPB202032.190446
    [11]
    黄麒力, 胡林林, 马国武, 等. 基于量热法的大功率毫米波功率测量及校准系统设计[J]. 强激光与粒子束, 2022, 34:043005 doi: 10.11884/HPLPB202234.210501

    Huang Qili, Hu Linlin, Ma Guowu, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34: 043005 doi: 10.11884/HPLPB202234.210501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (384) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return