Citation: | Yan Haoyue, Dong Lan, Wang Tong, et al. Surface network survey scheme and data processing at High Energy Photon Source[J]. High Power Laser and Particle Beams, 2023, 35: 114003. doi: 10.11884/HPLPB202335.230117 |
[1] |
郭迎钢, 李宗春, 李广云, 等. 粒子加速器工程控制网研究进展与展望[J]. 测绘通报, 2020(1):136-141
Guo Yinggang, Li Zongchun, Li Guangyun, et al. Progress and prospect of engineering control network for particle accelerator[J]. Bulletin of Surveying and Mapping, 2020(1): 136-141
|
[2] |
于成浩, 殷立新, 杜涵文, 等. 上海光源准直测量方案设计[J]. 强激光与粒子束, 2006, 18(7):1167-1172
Yu Chenghao, Yin Lixin, Du Hanwen, et al. Survey and alignment design of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2006, 18(7): 1167-1172
|
[3] |
王铜, 董岚, 梁静, 等. 中国散裂中子源准直控制网数据处理方法[J]. 强激光与粒子束, 2021, 33:104002 doi: 10.11884/HPLPB202133.210096
Wang Tong, Dong Lan, Liang Jing, et al. Adjustment method of control network for alignment in CSNS[J]. High Power Laser and Particle Beams, 2021, 33: 104002 doi: 10.11884/HPLPB202133.210096
|
[4] |
苏京平. 控制网的稳定性分析[J]. 城市勘测, 2000(4):14-16
Su Jingping. Stability analysis of control network[J]. Urban Geotechnical Investigation & Surveying, 2000(4): 14-16
|
[5] |
马娜, 董岚, 梁静, 等. 基于加速器控制网的GPS绝对测量精度探讨[J]. 北京测绘, 2014(6):23-27,43 doi: 10.3969/j.issn.1007-3000.2014.06.007
Ma Na, Dong Lan, Liang Jing, et al. Discussion on absolute accuracy of measurement based on accelerator control network[J]. Beijing Surveying and Mapping, 2014(6): 23-27,43 doi: 10.3969/j.issn.1007-3000.2014.06.007
|
[6] |
张勤, 李家权. GPS测量原理及应用[M]. 北京: 科学出版社, 2005: 73-85
Zhang Qin, Li Jiaquan. Research on teaching reform for the course of GPS surveying principle and applications[M]. Beijing: Science Press, 2005: 73-85
|
[7] |
马娜, 罗红斌, 梁静, 等. 一种高精度超大仪器高的测量方案设计[J]. 测绘通报, 2017(10):128-132
Ma Na, Luo Hongbin, Liang Jing, et al. A high precision measurement design to obtain super instrument height[J]. Bulletin of Surveying and Mapping, 2017(10): 128-132
|
[8] |
陈继华. 激光跟踪仪和全站仪测量系统在上海光源(SSRF)工程中的应用研究[D]. 郑州: 信息工程大学, 2001
Chen Jihua. Research on application of laser tracker and total station measuring system in Shanghai SSRF project[D]. Zhengzhou: Information Engineering University, 2001
|
[9] |
梁静, 王铜, 罗涛, 等. 一种空间位置测量方法: 106646364B[P]. 2019-01-11
Liang Jing, Wang Tong, Luo Tao, et al. A method of measuring spatial position: 106646364B[P]. 2019-01-11
|
[10] |
魏迎国. 二等水准测量在矿区沉降形变监测中的应用[J]. 中国金属通报, 2022(5):165-167
Wei Yingguo. Application of second-class leveling in monitoring subsidence deformation in mining area[J]. China Metal Bulletin, 2022(5): 165-167
|
[11] |
冯林刚, 张宗海. 关于GPS控制网WGS84平差坐标向地方独立坐标系的转换[J]. 测绘通报, 2005(3):27-29
Feng Lingang, Zhang Zonghai. On transformation of WGS adjusted coordinates of GPS control network into local independent coordinate system[J]. Bulletin of Surveying and Mapping, 2005(3): 27-29
|
[12] |
王铜, 董岚, 罗涛, 等. 中国散裂中子源控制网测量方案及数据处理[J]. 地理空间信息, 2016, 14(11):55-57
Wang Tong, Dong Lan, Luo Tao, et al. Surveying scheme and data processing of the primary control network for China Spallation Neutron Source[J]. Geospatial Information, 2016, 14(11): 55-57
|
[13] |
于亚杰, 赵英志, 张月华. 基于椭球膨胀法实现独立坐标系统的建立[J]. 测绘通报, 2011(12):33-36
Yu Yajie, Zhao Yingzhi, Zhang Yuehua. The establishment of independent coordinate system based on the ellipsoid expansion method[J]. Bulletin of Surveying and Mapping, 2011(12): 33-36
|
[14] |
郭小鹏. GPS网与地面网无约束平差在公路测量中的应用[J]. 测绘技术装备, 2007, 9(2):35-36
Guo Xiaopeng. Application of nonrestraint adjustment of GPS and ground control network in road survey[J]. Geomatics Technology and Equipment, 2007, 9(2): 35-36
|
[15] |
梁静, 董岚, 王铜, 等. 高程拟合变换的平面坐标获取方法研究[J]. 地理空间信息, 2022, 20(2):89-92
Liang Jing, Dong Lan, Wang Tong, et al. Research on the plane coordinate transformation by height fitting method[J]. Geospatial Information, 2022, 20(2): 89-92
|
[16] |
东莞中子科学中心. 激光跟踪仪测量数据处理系统: 2017SR681327[P]. 2017-05-01
Dongguan Neutron Science Center. Laser tracker measurement data processing system: 2017SR681327[P]. 2017-05-01
|
[17] |
叶超, 胡耀文, 江华, 等. 顾及地球曲率和大气折光的全站仪观测距离精密归算[J]. 测绘技术装备, 2022, 24(2):110-113 doi: 10.20006/j.cnki.61-1363/P.2022.02.022
Ye Chao, Hu Yaowen, Jiang Hua, et al. Precision distance reduction for total station with consideration of earth curvature and atmosphere refraction[J]. Geomatics Technology and Equipment, 2022, 24(2): 110-113 doi: 10.20006/j.cnki.61-1363/P.2022.02.022
|
[1] | Zhang Fan, Tian Chuan, Ma Shichuan, Xie Jiangyuan, Jin Zhaoxin, Jing Xiaopeng. Design and test of a compact wideband high power microwave source[J]. High Power Laser and Particle Beams, 2023, 35(2): 023006. doi: 10.11884/HPLPB202335.220125 |
[2] | Yao Daibo, Yang Xuan, Guo Qinggong. Design of C/X dual band and dual circularly polarized shared-aperture microstrip antenna[J]. High Power Laser and Particle Beams, 2023, 35(10): 103002. doi: 10.11884/HPLPB202335.230224 |
[3] | Huang Xinyuan, Jiang Kun, Guo Qinggong. Design of highly isolated common aperture microstrip antenna for L/S/C/X band[J]. High Power Laser and Particle Beams, 2022, 34(12): 123004. doi: 10.11884/HPLPB202234.220241 |
[4] | Hao Jianhong, Cao Zhanguo, Fan Zonghao, Wang Hui, Guo Chao. Design and analysis of ladder-type microstrip antenna with electranagnetic bandgap structure[J]. High Power Laser and Particle Beams, 2018, 30(4): 043005. doi: 10.11884/HPLPB201830.170419 |
[5] | Dong Yunqi, Huang Bo, Zhao Xinyue, Liu Yubao, Ruan Jiufu. Terahertz dual-band microstrip antenna based on defected ground structure[J]. High Power Laser and Particle Beams, 2018, 30(7): 073101. doi: 10.11884/HPLPB201830.180029 |
[6] | Zuo Quanhe, Geng Youlin. Design of antenna array with 24 GHz wide beam[J]. High Power Laser and Particle Beams, 2018, 30(2): 023005. doi: 10.11884/HPLPB201830.170282 |
[7] | Wang Wenxing, Jiang Honglin, Yang Jingjing, Huang Ming. Simulation and design of orbital angular momentum antenna with broadband and multimode in X-band[J]. High Power Laser and Particle Beams, 2018, 30(10): 103001. doi: 10.11884/HPLPB201830.180157 |
[8] | Xie Miaozhen, Chen Ming. Wide axial ratio beamwidth microstrip antenna based on bilayer substrates[J]. High Power Laser and Particle Beams, 2017, 29(11): 113003. doi: 10.11884/HPLPB201729.170097 |
[9] | Zhou Shouli, Yu Qi, Liang Xianfeng, An Junshe, Gu Weisi. Radio vortex electromagnetic beam generation based on circular patch array antenna[J]. High Power Laser and Particle Beams, 2016, 28(07): 073202. doi: 10.11884/HPLPB201628.073202 |
[10] | Wang Chao, Dong Xiucheng, Zhang Mintao, Zhou Kaiming, Tang Yong, Yang Qiuyan. Development of electromagnetic pulse measurement system based on FPGA[J]. High Power Laser and Particle Beams, 2015, 27(12): 125006. doi: 10.11884/HPLPB201527.125006 |
[11] | Zhu Xiancheng, Chen Ming, Chen Di. Multiband printed monopole antenna for WLAN/WiMAX applications[J]. High Power Laser and Particle Beams, 2015, 27(11): 113003. doi: 10.11884/HPLPB201527.113003 |
[12] | Zhao Yajuan, Wang Donghong, Li Baoyi, Wang Peng, Zhou Bicheng, Jiang Bo. Enhancement of gain for dual-band microstrip antenna based on left-handed materials[J]. High Power Laser and Particle Beams, 2015, 27(10): 103254. doi: 10.11884/HPLPB201527.103254 |
[13] | Yang Liufeng, Wang Ting. MEMS patch antenna array with broadband and high-gain on double-layer silicon wafers[J]. High Power Laser and Particle Beams, 2015, 27(02): 024129. doi: 10.11884/HPLPB201527.024129 |
[14] | Li Lei, Zhang Xin, Sun Yaxiu. Response of X-band 4-unit microstrip antenna array to high power electromagnetic pulse[J]. High Power Laser and Particle Beams, 2014, 26(08): 083002. doi: 10.11884/HPLPB201426.083002 |
[15] | li wei, geng youlin. Design of novel dual-band microstrip antenna for wireless local area network applications[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[16] | zhao fei, ye liangfeng, chen zeping, chai shunlian, mao junjie. Feed loss and high radiant efficiency microstrip antenna array[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- . |
[17] | cao hailin, wang shuaitao, yang shizhong, yang lisheng. Design of focal-plane array with electromagnetic bandgap structure[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[18] | wang xin, liu qingxiang. Monopole antenna with top load[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[19] | chen xi, liang changhong, liu songhua, liang le. Effect of cascaded mushroom-like EBG structure on multual coupling of dual-band microstrip antenna[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[20] | xu gang, liao yong, meng fanbao, tang chuanxiang, yang zhoubing, xie ping. Characteristics of two-layer patch microstrip antenna for high power wide-band microwave radiation[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- . |