Zeng Liuxing, Lin Fumin, Xiao Yujie. Miniaturized cavity filter based on TM010 mode dielectric resonators[J]. High Power Laser and Particle Beams, 2018, 30: 093003. doi: 10.11884/HPLPB201830.180043
Citation: Chen Hong, Wei Jinhong, Zeng Fanzheng, et al. Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2023, 35: 105004. doi: 10.11884/HPLPB202335.230123

Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch

doi: 10.11884/HPLPB202335.230123
  • Received Date: 2023-05-11
  • Accepted Date: 2023-08-30
  • Rev Recd Date: 2023-08-30
  • Available Online: 2023-09-13
  • Publish Date: 2023-10-08
  • Based on the theory of multiple avalanche domains, a two-dimensional numerical model for GaAs PCSS with opposed electrode structure is established. The influence of the width of the trigger region on the output characteristics of GaAs PCSS is investigated. Firstly, the switching transient of PCSS is analyzed. The results show that the rapid increase of the carrier concentration and the drastic evolution of the charge domain make PCSS operate in the ultrafast-switching mode. On this basis, this paper studies the influence of the width on the output characteristics of PCSS. The results show that the increase in the width can accelerate the rapid multiplication of carrier concentration and the rapid evolution of avalanche ionization domain, thus shorten the delay time and switching time of PCSS. Further more, the effects of different trigger positions on the delay time and switching time are analyzed. The results show that the delay time under cathode triggering is significantly lower than that under anode triggering, and the switching time is almost unaffected by the trigger position. The above conclusions can provide significant reference for the study on time jitter and synchronization of GaAs PCSS.
  • [1]
    Wang Langning, Liu Jingliang. Solid-state nanosecond pulse generator using photoconductive semiconductor switch and helical pulse forming line[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3240-3245. doi: 10.1109/TPS.2017.2764502
    [2]
    Li Song, Gao Jingming, Yang Hanwu, et al. Investigation on dynamic properties of amorphous magnetic core stimulated by different driving voltages[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4536-4540. doi: 10.1109/TPS.2019.2914265
    [3]
    Tian Liqiang, Shi Wei. Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches[J]. Journal of Applied Physics, 2008, 103: 124512. doi: 10.1063/1.2940728
    [4]
    Xu Ming, Liu Rujun, Shang Xiaoyan, et al. High-gain operation of GaAs photoconductive semiconductor switch at 24.3nJ excitation[J]. IEEE Electron Device Letters, 2016, 37(6): 751-753. doi: 10.1109/LED.2016.2556858
    [5]
    Shi Wei, Wang Shaoqiang, Ma Cheng, et al. Generation of an ultra-short electrical pulse with width shorter than the excitation laser[J]. Scientific Reports, 2016, 6: 27577. doi: 10.1038/srep27577
    [6]
    Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
    [7]
    Sun Yue, Hu Long, Dang Xin, et al. Investigation on the mechanism of triggering efficiency of high-power avalanche GaAs photoconductive semiconductor switch[J]. IEEE Electron Device Letters, 2021, 42(11): 1646-1649. doi: 10.1109/LED.2021.3114600
    [8]
    袁建强, 刘宏伟, 刘金锋, 等. 不同形状的光斑触发砷化镓光导开关[J]. 强激光与粒子束, 2010, 22(3):557-560 doi: 10.3788/HPLPB20102203.0557

    Yuan Jianqiang, Liu Hongwei, Liu Jinfeng, et al. GaAs photoconductive semiconductor switch triggered by laser spots with different profiles[J]. High Power Laser and Particle Beams, 2010, 22(3): 557-560 doi: 10.3788/HPLPB20102203.0557
    [9]
    Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 2014, 104: 042108. doi: 10.1063/1.4863738
    [10]
    Zhang Tian, Liu Kefu, Gao Shijia, et al. Characteristics of GaAs PCSS triggered by 1 μJ laser diode[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1991-1996. doi: 10.1109/TDEI.2015.004950
    [11]
    Selberherr S. Analysis and simulation of semiconductor devices[M]. Wien: Springer-Verlag, 1984.
    [12]
    Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 4963-4969. doi: 10.1109/TED.2020.3025984
    [13]
    Vainshtein S N, Yuferev V S, Kostamovaara J T. Ultrahigh field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor[J]. Journal of Applied Physics, 2005, 97: 024502. doi: 10.1063/1.1839638
    [14]
    刘英洲, 韦金红, 王郎宁, 等. 同面电极砷化镓光导开关的导通特性[J]. 半导体技术, 2023, 48(1):10-17

    Liu Yingzhou, Wei Jinhong, Wang Langning, et al. Switching transient characteristics of GaAs photoconductive semiconductor switch with co-planar electrodes[J]. Semiconductor Technology, 2023, 48(1): 10-17
    [15]
    陈星弼, 陈勇, 刘继芝, 等. 微电子器件[M]. 4版. 北京: 电子工业出版社, 2018

    Chen Xingbi, Chen Yong, Liu Jizhi, et al. Microelectronic devices[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2018
    [16]
    Wei Jinhong, Li Song, Wang Langning, et al. Properties of switching transient in the semi-insulating GaAs photoconductive semiconductor switch with opposed contacts[J]. IEEE Transactions on Plasma Science, 2022, 50(10): 3635-3643. doi: 10.1109/TPS.2022.3207061
  • Relative Articles

  • Cited by

    Periodical cited type(3)

    1. 李晓琪,郑友琦,杜夏楠,王永平. 基于SARAX/DAKOTA的快堆设计多目标优化框架开发与验证. 原子能科学技术. 2022(01): 96-105 .
    2. 李湛,周旭华,丁铭,黄杰. 比值法下基于不同选择策略的遗传算法换料优化比较分析. 核动力工程. 2021(05): 23-29 .
    3. 丁辉,孙光耀,吴斌,郝丽娟,吴宜灿. 基于改进差分进化的堆芯装载优化. 核技术. 2019(06): 69-74 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.1 %FULLTEXT: 23.1 %META: 75.7 %META: 75.7 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United States: 0.3 %United States: 0.3 %[]: 0.1 %[]: 0.1 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯兰堡: 0.5 %伊斯兰堡: 0.5 %北京: 21.8 %北京: 21.8 %台州: 1.2 %台州: 1.2 %哈尔滨: 1.0 %哈尔滨: 1.0 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.1 %嘉兴: 0.1 %广州: 0.1 %广州: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.4 %徐州: 0.4 %成都: 0.7 %成都: 0.7 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.0 %杭州: 2.0 %格兰特县: 0.7 %格兰特县: 0.7 %桃园: 0.1 %桃园: 0.1 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.2 %沧州: 0.2 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.4 %湖州: 0.4 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 42.3 %西宁: 42.3 %西安: 0.9 %西安: 0.9 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %鞍山: 0.2 %鞍山: 0.2 %其他ChinaIndiaUnited States[]上海中山临汾丹东丽水伊斯兰堡北京台州哈尔滨哥伦布嘉兴广州弗吉张家口徐州成都昆明晋城普洱杭州格兰特县桃园武汉沈阳沧州淮南深圳湖州石家庄秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆金华长沙长治鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (588) PDF downloads(78) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return