Volume 35 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127
Citation: Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127

Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining

doi: 10.11884/HPLPB202335.230127
  • Received Date: 2023-05-11
  • Accepted Date: 2023-08-18
  • Rev Recd Date: 2023-08-18
  • Available Online: 2023-08-21
  • Publish Date: 2023-09-15
  • Two 808 nm semiconductor lasers were combined by V-shaped spectral beam combining and locked at 795.8 nm and 800.5 nm respectively. The output power and beam quality in the slow axis were improved significantly. The sum frequency of semiconductor lasers was realized based on the laser source. A laser with an output power of 6.5 W and beam quality of M2=2.2×18.5 was obtained by the spectral beam combining. The M2 in slow axis was improved by 30% and the combining efficiency was 83%. The sum frequency laser with 401.0 nm at a power of 18.3 mW was obtained and the efficiency of sum frequency generation was 0.28%.
  • loading
  • [1]
    Witte U, Schneider F, Traub M, et al. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters[J]. Optics Express, 2016, 24(20): 22917-22929. doi: 10.1364/OE.24.022917
    [2]
    Pietrzak A, Zorn M, Huelsewede R, et al. Development of highly efficient laser diodes emitting around 1060nm for medical and industrial applications[C]//Proceedings of SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000K.
    [3]
    Shimada N, Yukawa M, Shibata K, et al. 640-nm laser diode for small laser display[C]//Proceedings of SPIE 7198, High-Power Diode Laser Technology and Applications VII. 2009: 719806.
    [4]
    Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119. doi: 10.1103/PhysRevLett.7.118
    [5]
    Edmonds H, Smith A. Second-harmonic generation with the GaAs laser[J]. IEEE Journal of Quantum Electronics, 1970, 6(6): 356-360. doi: 10.1109/JQE.1970.1076460
    [6]
    Yamamoto K, Yamamoto H, Taniuchi T. Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide[J]. Applied Physics Letters, 1991, 58(12): 1227-1229. doi: 10.1063/1.104370
    [7]
    Müller A, Jensen O B, Hasler K H, et al. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers[J]. Optics Letters, 2012, 37(18): 3753-3755. doi: 10.1364/OL.37.003753
    [8]
    Hansen A K, Jensen O B, Andersen P E, et al. 5.5 W of diffraction-limited green light generated by SFG of tapered diode lasers in a cascade of nonlinear crystals[C]//Frontiers in Optics 2015. 2015: FTu2F. 3.
    [9]
    Zhu Zhanda, Jiang Menghua, Yu Haoyang, et al. Generation of blue light by sum-frequency generation of a spectrally combined broad-area diode laser array[J]. Optics Letters, 2016, 41(20): 4712-4714. doi: 10.1364/OL.41.004712
    [10]
    周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Suo Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [11]
    王立军, 彭航宇, 张俊. 大功率半导体激光合束进展[J]. 中国光学, 2015, 8(4):517-534 doi: 10.3788/co.20150804.0517

    Wang Liju, Peng Hangyu, Zhang Jun. Advance on high power diode laser coupling[J]. Chinese Optics, 2015, 8(4): 517-534 doi: 10.3788/co.20150804.0517
    [12]
    Zhu Hongbo, Lin Xingchen, Zhang Yawei, et al. kW-class fiber-coupled diode laser source based on dense spectral multiplexing of an ultra-narrow channel spacing[J]. Optics Express, 2018, 26(19): 24723-24733. doi: 10.1364/OE.26.024723
    [13]
    Zhu Hongbo, Duan Xiaoming, Fan Shengli, et al. Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers[J]. Optics & Laser Technology, 2020, 132: 106470.
    [14]
    Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891
    [15]
    Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407. doi: 10.1364/OL.25.000405
    [16]
    Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621-623. doi: 10.1364/OL.36.000621
    [17]
    孟慧成, 谭昊, 李建民, 等. 半导体激光器光栅外腔光谱合束技术研究进展[J]. 激光与光电子学进展, 2015, 52:020003

    Meng Huicheng, Tan Hao, Li Jianmin. Development of spectral beam combining of diode laser by grating and external cavity[J]. Laser & Optoelectronics Progress, 2015, 52: 020003
    [18]
    Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
    [19]
    禹伶洁. 激光合束专利技术现状及进展[J]. 中国新技术新产品, 2020(5):139-140 doi: 10.3969/j.issn.1673-9957.2020.05.064

    Yu Lingjie. Development of patent technology for laser beam combination[J]. New Technologies & New Products of China, 2020(5): 139-140 doi: 10.3969/j.issn.1673-9957.2020.05.064
    [20]
    Jung A, Song S, Kim S, et al. Numerical analyses of a spectral beam combining multiple Yb-doped fiber lasers for optimal beam quality and combining efficiency[J]. Optics Express, 2022, 30(8): 13305-13319. doi: 10.1364/OE.455728
    [21]
    张俊, 彭航宇, 曹军胜, 等. 970nm百瓦级半导体激光外腔反馈光谱合束光源[J]. 光学学报, 2013, 33:1114001 doi: 10.3788/AOS201333.1114001

    Zhang Jun, Peng Hangyu, Cao Junsheng, et al. 970 nm hundred-watt level diode laser source by spectral beam combining with external cavity feedback[J]. Acta Optica Sinica, 2013, 33: 1114001 doi: 10.3788/AOS201333.1114001
    [22]
    王立军, 彭航宇, 张俊, 等. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46:0401001 doi: 10.3788/IRLA201746.0401001

    Wang Lijun, Peng Hangyu, Zhang Jun, et al. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46: 0401001 doi: 10.3788/IRLA201746.0401001
    [23]
    Jechow A, Skoczowsky D, Lichtner M, et al. High-brightness emission from stripe-array broad area diode lasers operated in off-axis external cavities[C]//Proceedings of SPIE 7583, High-Power Diode Laser Technology and Applications VIII. 2010: 758312.
    [24]
    Vijayakumar D, Jensen O B, Thestrup B. 980 nm high brightness external cavity broad area diode laser bar[J]. Optics Express, 2009, 17(7): 5684-5690. doi: 10.1364/OE.17.005684
    [25]
    Sun Fangyuan, Shu Shili, Zhao Yufei, et al. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback[J]. Optics Express, 2018, 26(17): 21813-21818. doi: 10.1364/OE.26.021813
    [26]
    Zhao Yufei, Sun Fangyuan, Tong Cunzhu, et al. Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity[J]. Optics Express, 2018, 26(11): 14058-14065. doi: 10.1364/OE.26.014058
    [27]
    Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi: 10.1109/JQE.1980.1070479
    [28]
    孟慧成, 武德勇, 谭昊, 等. 窄光谱高亮度半导体激光器光栅-外腔光谱合束实验研究[J]. 中国激光, 2015, 42:0302003 doi: 10.3788/CJL201542.0302003

    Meng Huicheng, Wu Deyong, Tan Hao, et al. Experimental study on high brightness and narrow band of diode laser by spectral beam combining of grating-external cavity[J]. Chinese Journal of Lasers, 2015, 42: 0302003 doi: 10.3788/CJL201542.0302003
    [29]
    刘良清, 袁孝, 吕超. 双轴晶体和频时晶体长度与允许参量分析[J]. 激光技术, 2007, 31(3):232-234,245 doi: 10.3969/j.issn.1001-3806.2007.03.014

    Liu Liangqing, Yuan Xiao, Lü Chao. The crystal-length and acceptance parameters of SFG with biaxial crystals[J]. Laser Technology, 2007, 31(3): 232-234,245 doi: 10.3969/j.issn.1001-3806.2007.03.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (526) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return