Volume 35 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Yu Jiebing, Tan Biao, Kang Ling, et al. Application of oxygen-free copper surface treatment in beam collimator[J]. High Power Laser and Particle Beams, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129
Citation: Yu Jiebing, Tan Biao, Kang Ling, et al. Application of oxygen-free copper surface treatment in beam collimator[J]. High Power Laser and Particle Beams, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129

Application of oxygen-free copper surface treatment in beam collimator

doi: 10.11884/HPLPB202335.230129
  • Received Date: 2023-05-12
  • Accepted Date: 2023-08-25
  • Rev Recd Date: 2023-08-11
  • Available Online: 2023-10-09
  • Publish Date: 2023-10-08
  • As a key component of accelerators, beam collimators are used to absorb the beam halo particles that are not in the predetermined orbit. Due to its good conductivity and collimation efficiency, copper is widely used in beam collimators as the absorber material. In general, absorbers are located in ultra-high vacuum environment, and also loaded with high beam power, different surface treatment processes of the absorber will directly affect its heat transfer performance and vacuum performance. To evaluate the effect of the surface treatment of oxygen-free copper, the surface chemical corrosion blackening treatment, high temperature oxidation treatment and mechanical processing treatment are carried out respectively. The test results show that the thermal radiation coefficient and outgassing rate of copper blocks are increased obviously with surface blackening, however, the surface heat radiation coefficient of the copper blocks after high temperature oxidation is close to that of the machined copper block, while the outgassing rate increases a little. Taking the CSNS-II momentum collimator as the research object, with the beam load, blackening oxygen-free copper is used as the absorber, the maximum temperature can be controlled below 125 ℃, and the pressure of the collimator can meet the operation requirements by adding two ion pumps.
  • loading
  • [1]
    Yamamoto K, Kinsho M. Development of the collimator system for the 3 GeV rapid cycling synchrotron[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 1365-1367.
    [2]
    Wei Tao, Qin Qing. Design of the two-stage collimation system for CSNS/RCS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 566(2): 212-217.
    [3]
    魏涛. 中国散裂中子源快循环同步加速器束损研究[D]. 北京: 中国科学院高能物理研究所, 2008: 53-55

    Wei Tao. Beam loss studies on the rapid cycling synchrotron of China Spallation Neutron Source[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2008: 53-55
    [4]
    Wang Na, Wang Sheng, Huang Nan, et al. The design of beam collimation system for CSNS/RCS[C]//Proceedings of HB2010. 2010: 572-575.
    [5]
    余洁冰, 吴青彪, 吴煊, 等. CSNS/RCS次级准直器吸收体的冷却设计[J]. 强激光与粒子束, 2018, 30:085105 doi: 10.11884/HPLPB201830.170504

    Yu Jiebing, Wu Qingbiao, Wu Xuan, et al. Cooling design of secondary collimator absorbers at CSNS/RCS[J]. High Power Laser and Particle Beams, 2018, 30: 085105 doi: 10.11884/HPLPB201830.170504
    [6]
    邹易清, 康玲, 屈化民, 等. 中国散裂中子源快循环同步加速器主准直器的设计与研究[J]. 强激光与粒子束, 2013, 25(3):741-745 doi: 10.3788/HPLPB20132503.0741

    Zou Yiqing, Kang Ling, Qu Huamin, et al. Chromatic correction for CSNS/RCS and nonlinear effects of chromaticity sextupoles[J]. High Power Laser and Particle Beams, 2013, 25(3): 741-745 doi: 10.3788/HPLPB20132503.0741
    [7]
    Zou Yiqing, Wang Na, Kang Ling, et al. Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS[J]. Chinese Physics C, 2013, 37: 057004. doi: 10.1088/1674-1137/37/5/057004
    [8]
    杨建权. 超级质子对撞机SPPC束流准直方法的研究[D]. 北京: 中国科学院高能物理研究所, 2019: 81-83

    Yang Jianquan. Collimation method studies for the SPPC[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2019: 81-83
    [9]
    Smith H V, Adams D J, Jones B, et al. Activation models of the ISIS collectors[C]//Proceedings of 5th International Particle Accelerator Conference. 2014: 893-895.
    [10]
    Yamamoto K. The beam collimator system of J-PARC rapid cycling synchrotron[C]//Proceedings of HB2008. 2008: 1-55.
    [11]
    Yamamoto K, Okazaki M, Hirooka Y, et al. Present status of beam collimation system of J-PARC RCS[C]//Proceedings of EPAC 2006. 2006: 3200-3202.
    [12]
    Ishibashi T, Terui S, Suetsugu Y, et al. Movable collimator system for SuperKEKB[J]. Physical Review Accelerators and Beams, 2020, 23: 053501. doi: 10.1103/PhysRevAccelBeams.23.053501
    [13]
    Bertarelli A, Dallocchio A, Gentini L, et al. Mechanical engineering and design of the LHC Phase II collimators[C]//Proceedings of the 1st International Particle Accelerator Conference. 2010: 1683-1685.
    [14]
    Boccard C, Dallocchio A, Bertarelli A, et al. Embedded collimator beam position monitors[C]//Proceedings of the 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators. 2011: 80-82.
    [15]
    葛绍岩. 金属及其他物质的热辐射性质表[M]. 北京: 科学出版社, 1958

    Ge Shaoyan. Thermal radiation properties of metals and other substances[M]. Beijing: Science Press, 1958
    [16]
    许令顺, 李勇, 徐中堂, 等. 几种不同铜表面发黑技术的对比[J]. 中国表面工程, 2013, 26(6):75-79

    Xu Lingshun, Li Yong, Xu Zhongtang, et al. Comparation of several different blacken technologies of copper surface[J]. China Surface Engineering, 2013, 26(6): 75-79
    [17]
    张忠诚, 张红兵. 黄铜表面的发黑处理研究[J]. 中国表面工程, 2003, 16(1):41-42,48 doi: 10.3321/j.issn:1007-9289.2003.01.012

    Zhang Zhongcheng, Zhang Hongbing. Study on surface blackening treatment of brass[J]. China Surface Engineering, 2003, 16(1): 41-42,48 doi: 10.3321/j.issn:1007-9289.2003.01.012
    [18]
    刘彬云, 薛怀玉, 王群, 等. 环保型非甲醛化学镀铜发黑问题初探[J]. 印制电路信息, 2007(3):48-50 doi: 10.3969/j.issn.1009-0096.2007.03.013

    Liu Binyun, Xue Huaiyu, Wang Qun, et al. Environmentally friendly non-formaldehyde PTH darkness preliminary investigation[J]. Printed Circuit Information, 2007(3): 48-50 doi: 10.3969/j.issn.1009-0096.2007.03.013
    [19]
    Yu Jiebing, Xu Shouyan, Wu Qingbiao, et al. Operation status of CSNS/RCS transverse collimation system[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 1862-1864.
    [20]
    关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报, 2020, 40(6):524-530 doi: 10.13922/j.cnki.cjovst.2020.06.05

    Guan Yuhui, Song Hong, Dong Haiyi, et al. Measurement of low outgassing-rate in self-developed pumping-path switching algorithm: a methodological study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(6): 524-530 doi: 10.13922/j.cnki.cjovst.2020.06.05
    [21]
    张涤新, 曾祥坡, 冯焱, 等. 材料放气率测量方法评述[J]. 真空, 2010, 47(6):1-5 doi: 10.13385/j.cnki.vacuum.2010.06.007

    Zhang Dixin, Zeng Xiangpo, Feng Yan, et al. Review of measuring methods of outgassing rate[J]. Vacuum, 2010, 47(6): 1-5 doi: 10.13385/j.cnki.vacuum.2010.06.007
    [22]
    郭迪舟, 张军辉, 蒙峻, 等. 基于双通道方法对不锈钢高温出气性能的研究[J]. 真空科学与技术学报, 2011, 31(3):368-371 doi: 10.3969/j.issn.1672-7126.2011.03.23

    Guo Dizhou, Zhang Junhui, Meng Jun, et al. Evaluation of high temperature outgassing rates of stainless steel in method of switching between two pumping paths[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(3): 368-371 doi: 10.3969/j.issn.1672-7126.2011.03.23
    [23]
    冯焱, 曾祥坡, 张涤新, 等. 小孔流导法材料放气率测量装置的设计[J]. 宇航计测技术, 2010, 30(3):66-69 doi: 10.3969/j.issn.1000-7202.2010.03.016

    Feng Yan, Zeng Xiangpo, Zhang Dixin, et al. Design of measurement apparatus for material outgassing rates by orifice conductance method[J]. Journal of Astronautic Metrology and Measurement, 2010, 30(3): 66-69 doi: 10.3969/j.issn.1000-7202.2010.03.016
    [24]
    曾祥坡, 张涤新, 冯焱, 等. 小孔流导法测量材料放气率研究[J]. 真空, 2010, 47(3):55-58 doi: 10.13385/j.cnki.vacuum.2010.03.009

    Zeng Xiangpo, Zhang Dixin, Feng Yan, et al. Study on measuring outgassing rate of materials via orifice throughput method[J]. Vacuum, 2010, 47(3): 55-58 doi: 10.13385/j.cnki.vacuum.2010.03.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (352) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return