Wang Yue, Chen Zaigao, Wang Jianguo. Charge conserving emission technique for three-dimensional conformal particle-in-cell simulations[J]. High Power Laser and Particle Beams, 2016, 28: 033020. doi: 10.11884/HPLPB201628.033020
Citation: Ning Cheng, Huang Weihao, Xue Chuang, et al. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133

Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule

doi: 10.11884/HPLPB202335.230133
  • Received Date: 2023-03-15
  • Accepted Date: 2023-06-15
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-06-26
  • Publish Date: 2023-08-15
  • In this paper, by means of the developed two dimensional radiation magneto-hydrodynamic Lagrangian code, the dynamic hohlraums, which are consisted of tungsten plasma shell and low density foam cylinder with or without an embedded hard foam layer on the cylinder and a capsule in the center, are simulated. We understand the effects of the hard foam layer on the hohlraum radiation field, and the coupling of capsule and hohlraum for the capsule fusion, by comparing the simulated results of different configuration hohlraums. After applying a hard foam layer on the low density foam cylinder, the time, uniformity, and the first peak value of radiation field, receipted by the capsule, is delayed, increased, and reduced, respectively. Furthermore, the radiation temperature on the capsule surface is increasing smoothly, and the dwelling time of the hohlraum is prolonged. For a driven current of peak 50 MA and full rise time 300 ns, the dwelling time can be longer than 10 ns, and the radiation temperature at the late time can be higher than 350 eV. The time variation of the radiation temperature is close to that measured in American National Ignition Facility (NIF) hohlraum in which the capsule was imploded and the fusion energy of 1.37 MJ was released. After embedding a capsule into the center of low density foam cylinder, the radiation temperature receipted by the capsule during the late process increases. This implies that both the hard foam layer and the coupling of the capsule and the dynamic hohlraum are good for the capsule ablating implosion.
  • [1]
    Tollefson J, Gibney E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 2022, 612(7941): 597-598. doi: 10.1038/d41586-022-04440-7
    [2]
    Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
    [3]
    Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
    [4]
    Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
    [5]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6]
    Lan Ke, Liu Jie, Lai Dongxian, et al. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21: 010704. doi: 10.1063/1.4863435
    [7]
    Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 055701. doi: 10.1063/5.0103362
    [8]
    Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 2018, 120: 165001. doi: 10.1103/PhysRevLett.120.165001
    [9]
    Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 2022, 128: 195001. doi: 10.1103/PhysRevLett.128.195001
    [10]
    Leeper R J, Alberts T E, Asay J R, et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories[J]. Nuclear Fusion, 1999, 39(9Y): 1283-1294. doi: 10.1088/0029-5515/39/9Y/306
    [11]
    Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 1999, 6(5): 2023-2029. doi: 10.1063/1.873457
    [12]
    Bailey J E, Chandler G A, Slutz S A, et al. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2002, 89: 095004. doi: 10.1103/PhysRevLett.89.095004
    [13]
    Rochau G A, Bailey J E, Maron Y, et al. Radiating shock measurements in the Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2008, 100: 125004. doi: 10.1103/PhysRevLett.100.125004
    [14]
    Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [15]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [16]
    Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [17]
    Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [18]
    蒋树庆, 甯家敏, 陈法新, 等. Z箍缩动态黑腔动力学及辐射特性初步实验研究[J]. 物理学报, 2013, 62:155203 doi: 10.7498/aps.62.155203

    Jiang Shuqing, Ning Jiamin, Chen Faxin, et al. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum[J]. Acta Physica Sinica, 2013, 62: 155203 doi: 10.7498/aps.62.155203
    [19]
    Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [20]
    Chu Y Y, Wang Z, Qi J M, et al. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 035902. doi: 10.1063/5.0079074
    [21]
    吴福源, 禇衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201

    Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
    [22]
    Mao Chongyang, Wen Wu, Xiao Delong, et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum[J]. Physics of Plasmas, 2021, 28: 092706. doi: 10.1063/5.0057626
    [23]
    Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
    [24]
    Ramis R, Meyer-ter-Vehn J, Ramírez J. MULTI2D–a computer code for two-dimensional radiation hydrodynamics[J]. Computer Physics Communications, 2009, 180(6): 977-994. doi: 10.1016/j.cpc.2008.12.033
    [25]
    Ning Cheng, Chen Zhongwang. 2-D numerical investigation of the formation of Z-pinch-driven dynamic hohlraum at 8-MA current level[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3794-3804. doi: 10.1109/TPS.2018.2871217
    [26]
    陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [27]
    宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征[J]. 物理学报, 2014, 63:125208 doi: 10.7498/aps.63.125208

    Ning Cheng, Feng Zhixing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63: 125208 doi: 10.7498/aps.63.125208
  • Relative Articles

    [1]Ding Jiafan, Li Hang, Jiang Wei, Jing Longfei, Lin Zhiwei, Guo Liang. Implosion experiment of neutron yield in indirectly driven double-metal-shell target[J]. High Power Laser and Particle Beams, 2025, 37(5): 052002. doi: 10.11884/HPLPB202537.240335
    [2]Guo Zhaoyan, Gao Tai, Xiao Jinshui, Tao Mingrui, Li Hongtao, Ma Xun. Pulse neutron measurement of dense plasma focus device based on scintillation detector[J]. High Power Laser and Particle Beams, 2025, 37(4): 044011. doi: 10.11884/HPLPB202537.240404
    [3]Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Mao Chongyang, Sun Shunkai. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35(2): 022001. doi: 10.11884/HPLPB202335.220253
    [4]Chen Jianfei, Zhou Hongtao, Fang Meihua, Wu Kang, Song Dingyi. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(10): 104002. doi: 10.11884/HPLPB202335.230149
    [5]Li Jie, Dong Pan, Wang Tao, Liu Erxiang, Liu Feixiang, He Jialong, Long Jidong, Zhang Linwen. Design and experimental study of magnetic field regulating ion source[J]. High Power Laser and Particle Beams, 2022, 34(7): 074001. doi: 10.11884/HPLPB202234.210515
    [6]Cui Bo, Zhang Zhimeng, Dai Zenghai, Qi Wei, Deng Zhigang, Huang Hua, He Shukai, Wang WeiWu, Teng Jian, Zhang Bo, Liu Hongjie, Chen Jiabin, Xiao Yunqing, Wu Di, Ma Wenjun, Hong Wei, Su Jingqin, Zhou Weimin, Gu Yuqiu. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33(9): 094004. doi: 10.11884/HPLPB202133.210330
    [7]Jiang Shaoen, Dong Yunsong, Huang Tianxuan, Li Sanwei, Tang Qi, Cao Zhurong, Yang Dong, Yang Guohong, Yang Zhenghua, Yi Rongqing, Su Chunxiao, Liu Shenye, Yang Jiamin, Wang Feng, Du Kai, He Zhibing, Zhu Qihua, Hu Dongxia, Zou Shiyang, Zheng Wudi, Ge Fengjun, Zhao Yiqing, Zhang Huasen, Gu Peijun, Liu Jie, Zhu Shaoping, Wang Jianguo, Zhang Baohan, Ding Yongkun. Initial indirect-driven implosion integrated experiment on Shenguang Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2016, 28(08): 080101. doi: 10.11884/HPLPB201628.160111
    [8]Gu Yuqiu, Zhang Feng, Shan Lianqiang, Bi Bi, Chen Jiabin, Wei Lai, Li jin, Song Zifeng, Liu Zhongjie, Yang Zhuhua, Yu Minghai, Cui Bo, Zhang Yi, Liu Hongjie, Liu Dongxiao, Wang Weiwu, Dai Zenghai, Yang Yimeng, Yang Lei, Zhang Faqiang, Wu Xiaojun, Du Kai, Zhou Weimin, Cao Leifeng, Zhang Baohan, Wu Junfeng, Ren Guoli, Cai Hongbo, Wu Shizhong, Cao Lihua, Zhang Hua, Zhou Cangtao, He Xiantu. Initial indirect cone-in-shell fast ignition integrated experiment on Shengguang Ⅱ-updated facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 110101. doi: 10.11884/HPLPB201527.110101
    [9]Wu Jian, Gan Lei, Jiang Yong, Li Junjie, Li Meng, Zou Dehui, Fan Xiaoqiang. Monte Carlo simulations of microstructured semiconductor neutron detectors with trench patterns[J]. High Power Laser and Particle Beams, 2015, 27(08): 084004. doi: 10.11884/HPLPB201527.084004
    [10]Song Zifeng, Tang Qi, Chen Jiabin, Liu Zhongjie, Zhan Xiayu, Deng Caibo. DT neutron yield diagnosis by copper activation on Shenguang-Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 112005. doi: 10.11884/HPLPB201527.112005
    [11]Zhou Mi, Wei Biao, Mi Deling, Yang Fan. Simulation study on highly-enriched uranium components with reflector based on 252Cf source-driven noise analysis method[J]. High Power Laser and Particle Beams, 2014, 26(05): 050101. doi: 10.11884/HPLPB201426.050101
    [12]Chen Yu, Jiang Yong, Wu Jian, Fan Xiaoqiang, Bai Lixin, Liu Bo, Li Meng, Rong Ru, Zou Dehui. Thermal neutron response of neutron detector based on SiC[J]. High Power Laser and Particle Beams, 2013, 25(10): 2711-2716. doi: 10.3788/HPLPB20132510.2711
    [13]zhang zhongbing, ouyang xiaoping, chen liang, zhang xianpeng, li hongyun. Detection of high-energy pulsed fission neutrons under high intensity irradiation[J]. High Power Laser and Particle Beams, 2011, 23(12): 48-49.
    [14]zhou changgeng, tang bin, wang xinhua, li yan, lou benchao, wu chunlei, hu yonghong. Application of a removable accelerator to fast neutron imaging[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [15]sheng jia-tian, mou wen-yong, li yun-sheng, gao yao-min, feng jie, chen jia-bin, li meng, feng ting-gui, zhagn li-fa, zeng xian-cai. Influence of non-LTE radiation ablation on imploding neutron yield[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [16]bai li xin, zhang yi yun, wu li ping, xu jia yun, zhao qing chang, sun da cheng, feng jie, wang da hai, yang cun bang, chen yu ting, wen shu huai, zheng zhi jian. Simulation of the γγ coincidence detection efficiency in activation measurment for neutron yield[J]. High Power Laser and Particle Beams, 2004, 16(04): 0- .
    [17]wu shou-dong, chen lin, xu min, yao bin, chen xue-song. Design and application of the double-vacuum bake device[J]. High Power Laser and Particle Beams, 2003, 15(02): 0- .
    [18]li ji, liao hua, zhou jun-lan, yang qin-lao, zhang huan-wen, niu han-ben. Experimental study of neutron oscillograph in ICF[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [19]feng jie, wang da-hai, yang cun-bang, chen yuting, wen shu-huai, zheng zhi-jian, zhang yi-yun, bai li-xin, wu li-ping, xu jia-yun, zhao qing-chang, sun da-chan. γ-γ coincidence counting system of Cu activstion measurement for fusion yield[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Cited by

    Periodical cited type(12)

    1. 周朴,常洪祥,粟荣涛,王小林,马阎星. 光纤激光相干合成的研究历程与发展趋势:基于文献引用的视角(特邀). 中国激光. 2024(01): 440-464 .
    2. 卞奇,薄勇,左军卫,彭钦军. 产生钠导引星星群的钠信标激光合/分束技术. 强激光与粒子束. 2023(04): 128-133 . 本站查看
    3. 李博,陈胜平,李敬岁,宋家鑫,宋锐,韩凯. 线偏振超连续谱研究进展. 光学学报. 2023(17): 262-277 .
    4. 侯涛,张蓉竹. 影响偏振合成效率的主要误差分析. 光学与光电技术. 2019(03): 20-24+65 .
    5. 王彤璐,孙鑫鹏,李晔,史俊锋,张志强,李川,陈园园,韩松. 多孔径激光阵列光束排布模式及误差对相干合成效率影响的研究. 光学技术. 2019(05): 605-611 .
    6. 王桂霞,崔智勇. 基于激光雷达的机器人精准制孔控制系统设计. 激光杂志. 2019(10): 103-106 .
    7. 王铀,赵海,蔡庆春,范盟. 激光远程排弹研究现状与关键技术. 电光与控制. 2018(01): 60-64 .
    8. 侯涛,曹锋利,张蓉竹. 偏振误差对相干偏振合成效率的影响. 激光技术. 2018(04): 572-576 .
    9. 杨昌盛,徐善辉,周军,何兵,杨依枫,渠红伟,赵智德,杨中民. 大功率光纤激光材料与器件关键技术研究进展. 中国科学:技术科学. 2017(10): 1038-1048 .
    10. 李宏勋,张锐. 光纤放大网络及其应用研究进展. 激光与光电子学进展. 2017(01): 17-28 .
    11. 王小林,周朴,粟荣涛,马鹏飞,陶汝茂,马阎星,许晓军,刘泽金. 高功率光纤激光相干合成的现状、趋势与挑战. 中国激光. 2017(02): 9-34 .
    12. 周朴. 高平均功率光纤激光技术基础:(1)概述. 强激光与粒子束. 2017(10): 7-12 . 本站查看

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 78.7 %META: 78.7 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.0 %United States: 0.0 %[]: 0.1 %[]: 0.1 %上海: 1.5 %上海: 1.5 %上饶: 0.0 %上饶: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %兰州: 0.2 %兰州: 0.2 %北京: 22.2 %北京: 22.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %厦门: 0.0 %厦门: 0.0 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %天津: 0.0 %天津: 0.0 %威海: 0.0 %威海: 0.0 %宣城: 0.1 %宣城: 0.1 %布鲁塞尔: 0.0 %布鲁塞尔: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.2 %广州: 0.2 %张家口: 0.4 %张家口: 0.4 %扬州: 0.1 %扬州: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.4 %杭州: 1.4 %武汉: 0.1 %武汉: 0.1 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %洛阳: 0.1 %洛阳: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 0.3 %芝加哥: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 44.7 %西宁: 44.7 %西安: 0.1 %西安: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %通辽: 0.0 %通辽: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阿什本: 0.4 %阿什本: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海上饶中山临汾丹东伊利诺伊州兰州北京十堰南京厦门台州合肥吉隆坡呼和浩特哥伦布唐山嘉兴天津威海宣城布鲁塞尔常州广州张家口扬州晋城普洱杭州武汉法尔肯施泰因洛阳深圳温州湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城通辽邯郸郑州长沙长治阿什本香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (518) PDF downloads(92) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return