Citation: | Ning Cheng, Huang Weihao, Xue Chuang, et al. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133 |
[1] |
Tollefson J, Gibney E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 2022, 612(7941): 597-598. doi: 10.1038/d41586-022-04440-7
|
[2] |
Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
|
[3] |
Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
|
[4] |
Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
|
[5] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[6] |
Lan Ke, Liu Jie, Lai Dongxian, et al. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21: 010704. doi: 10.1063/1.4863435
|
[7] |
Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 055701. doi: 10.1063/5.0103362
|
[8] |
Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 2018, 120: 165001. doi: 10.1103/PhysRevLett.120.165001
|
[9] |
Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 2022, 128: 195001. doi: 10.1103/PhysRevLett.128.195001
|
[10] |
Leeper R J, Alberts T E, Asay J R, et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories[J]. Nuclear Fusion, 1999, 39(9Y): 1283-1294. doi: 10.1088/0029-5515/39/9Y/306
|
[11] |
Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 1999, 6(5): 2023-2029. doi: 10.1063/1.873457
|
[12] |
Bailey J E, Chandler G A, Slutz S A, et al. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2002, 89: 095004. doi: 10.1103/PhysRevLett.89.095004
|
[13] |
Rochau G A, Bailey J E, Maron Y, et al. Radiating shock measurements in the Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2008, 100: 125004. doi: 10.1103/PhysRevLett.100.125004
|
[14] |
Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
|
[15] |
Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
|
[16] |
Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
|
[17] |
Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
|
[18] |
蒋树庆, 甯家敏, 陈法新, 等. Z箍缩动态黑腔动力学及辐射特性初步实验研究[J]. 物理学报, 2013, 62:155203 doi: 10.7498/aps.62.155203
Jiang Shuqing, Ning Jiamin, Chen Faxin, et al. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum[J]. Acta Physica Sinica, 2013, 62: 155203 doi: 10.7498/aps.62.155203
|
[19] |
Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
|
[20] |
Chu Y Y, Wang Z, Qi J M, et al. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 035902. doi: 10.1063/5.0079074
|
[21] |
吴福源, 禇衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201
Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
|
[22] |
Mao Chongyang, Wen Wu, Xiao Delong, et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum[J]. Physics of Plasmas, 2021, 28: 092706. doi: 10.1063/5.0057626
|
[23] |
Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
|
[24] |
Ramis R, Meyer-ter-Vehn J, Ramírez J. MULTI2D–a computer code for two-dimensional radiation hydrodynamics[J]. Computer Physics Communications, 2009, 180(6): 977-994. doi: 10.1016/j.cpc.2008.12.033
|
[25] |
Ning Cheng, Chen Zhongwang. 2-D numerical investigation of the formation of Z-pinch-driven dynamic hohlraum at 8-MA current level[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3794-3804. doi: 10.1109/TPS.2018.2871217
|
[26] |
陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202
Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
|
[27] |
宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征[J]. 物理学报, 2014, 63:125208 doi: 10.7498/aps.63.125208
Ning Cheng, Feng Zhixing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63: 125208 doi: 10.7498/aps.63.125208
|