Liu Shenggang, Tao Tianjiong, Ma Heli, et al. Method of big step height measurements based on white light frequency domain interferometry[J]. High Power Laser and Particle Beams, 2015, 27: 091007. doi: 10.11884/HPLPB201527.091007
Citation: Ning Cheng, Huang Weihao, Xue Chuang, et al. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133

Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule

doi: 10.11884/HPLPB202335.230133
  • Received Date: 2023-03-15
  • Accepted Date: 2023-06-15
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-06-26
  • Publish Date: 2023-08-15
  • In this paper, by means of the developed two dimensional radiation magneto-hydrodynamic Lagrangian code, the dynamic hohlraums, which are consisted of tungsten plasma shell and low density foam cylinder with or without an embedded hard foam layer on the cylinder and a capsule in the center, are simulated. We understand the effects of the hard foam layer on the hohlraum radiation field, and the coupling of capsule and hohlraum for the capsule fusion, by comparing the simulated results of different configuration hohlraums. After applying a hard foam layer on the low density foam cylinder, the time, uniformity, and the first peak value of radiation field, receipted by the capsule, is delayed, increased, and reduced, respectively. Furthermore, the radiation temperature on the capsule surface is increasing smoothly, and the dwelling time of the hohlraum is prolonged. For a driven current of peak 50 MA and full rise time 300 ns, the dwelling time can be longer than 10 ns, and the radiation temperature at the late time can be higher than 350 eV. The time variation of the radiation temperature is close to that measured in American National Ignition Facility (NIF) hohlraum in which the capsule was imploded and the fusion energy of 1.37 MJ was released. After embedding a capsule into the center of low density foam cylinder, the radiation temperature receipted by the capsule during the late process increases. This implies that both the hard foam layer and the coupling of the capsule and the dynamic hohlraum are good for the capsule ablating implosion.
  • [1]
    Tollefson J, Gibney E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 2022, 612(7941): 597-598. doi: 10.1038/d41586-022-04440-7
    [2]
    Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
    [3]
    Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
    [4]
    Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
    [5]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6]
    Lan Ke, Liu Jie, Lai Dongxian, et al. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21: 010704. doi: 10.1063/1.4863435
    [7]
    Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 055701. doi: 10.1063/5.0103362
    [8]
    Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 2018, 120: 165001. doi: 10.1103/PhysRevLett.120.165001
    [9]
    Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 2022, 128: 195001. doi: 10.1103/PhysRevLett.128.195001
    [10]
    Leeper R J, Alberts T E, Asay J R, et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories[J]. Nuclear Fusion, 1999, 39(9Y): 1283-1294. doi: 10.1088/0029-5515/39/9Y/306
    [11]
    Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 1999, 6(5): 2023-2029. doi: 10.1063/1.873457
    [12]
    Bailey J E, Chandler G A, Slutz S A, et al. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2002, 89: 095004. doi: 10.1103/PhysRevLett.89.095004
    [13]
    Rochau G A, Bailey J E, Maron Y, et al. Radiating shock measurements in the Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2008, 100: 125004. doi: 10.1103/PhysRevLett.100.125004
    [14]
    Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [15]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [16]
    Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [17]
    Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [18]
    蒋树庆, 甯家敏, 陈法新, 等. Z箍缩动态黑腔动力学及辐射特性初步实验研究[J]. 物理学报, 2013, 62:155203 doi: 10.7498/aps.62.155203

    Jiang Shuqing, Ning Jiamin, Chen Faxin, et al. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum[J]. Acta Physica Sinica, 2013, 62: 155203 doi: 10.7498/aps.62.155203
    [19]
    Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [20]
    Chu Y Y, Wang Z, Qi J M, et al. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 035902. doi: 10.1063/5.0079074
    [21]
    吴福源, 禇衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201

    Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
    [22]
    Mao Chongyang, Wen Wu, Xiao Delong, et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum[J]. Physics of Plasmas, 2021, 28: 092706. doi: 10.1063/5.0057626
    [23]
    Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
    [24]
    Ramis R, Meyer-ter-Vehn J, Ramírez J. MULTI2D–a computer code for two-dimensional radiation hydrodynamics[J]. Computer Physics Communications, 2009, 180(6): 977-994. doi: 10.1016/j.cpc.2008.12.033
    [25]
    Ning Cheng, Chen Zhongwang. 2-D numerical investigation of the formation of Z-pinch-driven dynamic hohlraum at 8-MA current level[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3794-3804. doi: 10.1109/TPS.2018.2871217
    [26]
    陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [27]
    宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征[J]. 物理学报, 2014, 63:125208 doi: 10.7498/aps.63.125208

    Ning Cheng, Feng Zhixing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63: 125208 doi: 10.7498/aps.63.125208
  • Relative Articles

    [1]Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35(5): 052002. doi: 10.11884/HPLPB202335.220280
    [2]Huang Xianbin, Xu Qiang, Wang Kunlun, Ren Xiaodong, Zhou Shaotong, Zhang Siqun, Cai Hongchun, Wang Guilin, Zhang Zhaohui, Jia Yuesong, Sun Qizhi, Liu Pan, Yuan Jianqiang, Li Hongtao, Wang Meng, Xie Weiping, Deng Jianjun. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33(1): 012002. doi: 10.11884/HPLPB202133.200128
    [3]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [4]Xiao Delong, Ding Ning, Wang Guanqiong, Wang Xiaoguang, Li Chenguang, Mao Chongyang. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32(9): 092005. doi: 10.11884/HPLPB202032.200094
    [5]Liu Xudong, Yang Yi, Bai Li, Yang Bo, Niu Gao, Yu Bin, Zhu Ye, Zhou Xiuwen. Preparation of continuous W wire with modulation diameter shape for Z-pinch[J]. High Power Laser and Particle Beams, 2016, 28(05): 054101. doi: 10.11884/HPLPB201628.054101
    [6]Yang Yi, Yang Bo, Liu Xudong, Niu Gao, Yu Bin, Zhu Ye, Zhou Xiuwen. Analysis of deviation sources and precision of cylindrical foam assembly in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2016, 28(11): 112002. doi: 10.11884/HPLPB201628.160118
    [7]Huang Xianbin, Ren Xiaodong, Dan Jiakun, Wang Kunlun, Zhou Shaotong, Xu Qiang, Zhang Siqun, Li Jing, Cai Hongchun, Ouyang Kai, Wei Bing, Ji Ce, Feng Shuping, Wang Meng, Xie Weiping, Deng Jianjun, Zhou Xiuwen, Yang Yi. Characteristics of tungsten wire array Z-pinch implosion radiation on PTS[J]. High Power Laser and Particle Beams, 2016, 28(02): 025006. doi: 10.11884/HPLPB201628.025006
    [8]Xie Jun, Huang Yanhua, Li Zhaoyang, Zhang Haijun, Li Guo, Song Chengwei, Wei Sheng, Zhang Zhaorui. Lapping technique for titanium spherical surface[J]. High Power Laser and Particle Beams, 2015, 27(07): 072002. doi: 10.11884/HPLPB201527.072002
    [9]Li Bo, Zhang Zhanwen, He Zhibing, Gao Dangzhong, Chen Sufen, He Xiaoshan, Zhao Xuesen, Qi Xiaobo, Liu Yiyang, Wang Zongwei, Liu Meifang, Ma Xiaojun, Meng Jie, Feng Jianhong, Su Lin, Chen Yongping, Liu Xiangdong, Li Jing, Li Jie. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27(03): 032024. doi: 10.11884/HPLPB201527.032024
    [10]Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26(09): 090201. doi: 10.11884/HPLPB201426.090201
    [11]Duan Shuchao, Zhang Zhengwei, Li Jing, Dan Jiakun, Zhou Shaotong, Zhang Siqun, Cai Hongchun, Ren Xiaodong, Huang Xianbin. Two-dimensional numerical investigation of the dynamic ablation of Z-pinch wire-array[J]. High Power Laser and Particle Beams, 2014, 26(04): 045050. doi: 10.11884/HPLPB201426.045050
    [12]Li Zhenghong, Huang Hongwen, Wang Zhen, Chen Xiaojun, Qi Jianmin, Guo Haibing, Ma Jimin, Xiao Chengjian, Chu Yanyun, Zhou Lin. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100202. doi: 10.11884/HPLPB201426.100202
    [13]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [14]Yang Bo, Zhou Xiuwen, He Wei, Liu Xudong, Yu Bin, Zhu Ye. Adhesives for assemblage of Z-pinch dynamic hohlraum load[J]. High Power Laser and Particle Beams, 2013, 25(02): 389-393. doi: 10.3788/HPLPB20132502.0389
    [15]Shi Zhan, Ge Liqin. Fabrication of polyacrylonitrile microcapsule for inertial confinement fusion based on microfluidic device[J]. High Power Laser and Particle Beams, 2013, 25(08): 1979-1983. doi: 10.3788/HPLPB20132508.1979
    [16]Qi Xiaobo, Zhang Zhanwen, Gao Cong, Li Bo, Wei Sheng. Permeability of hollow glass microspheres for inertial confinement fusion targets by dried-gel method[J]. High Power Laser and Particle Beams, 2012, 24(10): 2365-2370. doi: 10.3788/HPLPB20122410.2365
    [17]zhou xiuwen, liu xudong, yang bo, zhong hua, yu bin, bai li, wu weidong, tang yongjian. Self-adaptivity of columned dynamic hohlraums for Z-pinch on 4 MA drivers[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [18]yang bo, zhou xiuwen, he wei, liu xudong, yu bin, wu weidong. Relaxation property of polymer filaments used in Z-pinch target[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [19]cai hong-chun, chernenko a s, korolev v d, ustroev g i, ivanov m i. Dynamics of soft X-ray radiation spectra of imploding wire arrays on the S—300 pulsed power generator[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [20]duan bin, li yue-ming, fang quan-yu, zhang ji-yan. Calculation of temperature and density of plasmas in target pellet of ICF experiment[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
  • Cited by

    Periodical cited type(2)

    1. 祝德充,随艳峰,岳军会,彭月梅,刘佳明,曹建社. 高能光源增强器束流横向尺寸测量系统设计. 强激光与粒子束. 2021(04): 85-89 . 本站查看
    2. 王洪建,肖沙里,林睿,蒋昀赟. 基于Denauit-Hartenbery的高分辨Kirkpatrick-Baez镜成像结构设计与控制方法研究. 南京信息工程大学学报(自然科学版). 2020(03): 341-346 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 68.7 %META: 68.7 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 1.6 %其他: 1.6 %Rochester: 0.3 %Rochester: 0.3 %Seattle: 0.1 %Seattle: 0.1 %上海: 0.8 %上海: 0.8 %临汾: 0.3 %临汾: 0.3 %丹东: 0.4 %丹东: 0.4 %乐山: 0.1 %乐山: 0.1 %伊拉克利翁: 0.4 %伊拉克利翁: 0.4 %伊斯兰堡: 0.3 %伊斯兰堡: 0.3 %佛山: 0.1 %佛山: 0.1 %保定: 0.5 %保定: 0.5 %加利福尼亚州: 0.3 %加利福尼亚州: 0.3 %北京: 8.3 %北京: 8.3 %南京: 0.3 %南京: 0.3 %南宁: 0.1 %南宁: 0.1 %台州: 0.9 %台州: 0.9 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %安庆: 0.3 %安庆: 0.3 %宣城: 0.1 %宣城: 0.1 %常德: 0.5 %常德: 0.5 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.7 %库比蒂诺: 0.7 %张家口: 0.8 %张家口: 0.8 %徐州: 0.3 %徐州: 0.3 %德阳: 0.3 %德阳: 0.3 %悉尼: 0.5 %悉尼: 0.5 %成都: 1.1 %成都: 1.1 %扬州: 0.1 %扬州: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.4 %杭州: 0.4 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.5 %沈阳: 0.5 %洛杉矶: 0.4 %洛杉矶: 0.4 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.3 %海口: 0.3 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.3 %漯河: 1.3 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.5 %纽瓦克: 0.5 %绵阳: 3.1 %绵阳: 3.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 31.8 %芒廷维尤: 31.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.7 %苏州: 0.7 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.7 %衢州: 0.7 %西宁: 15.0 %西宁: 15.0 %西安: 1.2 %西安: 1.2 %西雅图: 0.7 %西雅图: 0.7 %诺沃克: 5.9 %诺沃克: 5.9 %贵阳: 0.5 %贵阳: 0.5 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.7 %运城: 1.7 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %长沙: 0.4 %长沙: 0.4 %门尼菲: 0.5 %门尼菲: 0.5 %香港: 0.3 %香港: 0.3 %黄冈: 0.1 %黄冈: 0.1 %其他其他RochesterSeattle上海临汾丹东乐山伊拉克利翁伊斯兰堡佛山保定加利福尼亚州北京南京南宁台州合肥哈尔滨嘉兴天津太原安庆宣城常德广州库比蒂诺张家口徐州德阳悉尼成都扬州昆明晋城普洱杭州武汉沈阳洛杉矶洛阳海口深圳温州湖州湘潭漯河石家庄秦皇岛纽瓦克绵阳肇庆芒廷维尤芝加哥苏州衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙运城遵义邯郸郑州重庆长沙门尼菲香港黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (512) PDF downloads(92) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return