Citation: | Lin Zude, Dai Yu, Xu Mengfei, et al. ICF modulation targets based on high-precision 3D printing technology[J]. High Power Laser and Particle Beams, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146 |
[1] |
单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235
Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
|
[2] |
王淦昌, 王乃彦. 惯性约束核聚变的进展和展望(I)[J]. 核科学与工程, 1989, 9(3):193-207
Wang Ganchang, Wang Naiyan. The progress and prospect in the inertial confinement fusion[J]. Chinese Journal of Nuclear Science and Engineering, 1989, 9(3): 193-207.
|
[3] |
李恩德, 杨泽平, 官春林, 等. 我国惯性约束聚变领域中的波前控制技术[J]. 光电工程, 2020, 47:200344
Li Ende, Yang Zeping, Guan Chunlin, et al. Wavefront control technology for ICF facility in China[J]. Opto-Electronic Engineering, 2020, 47: 200344.
|
[4] |
Khan N, Sharma P K. Investigation of Rayleigh–Taylor instability and internal waves in strongly coupled rotating magnetized quantum plasma[J]. Journal of Astrophysics and Astronomy, 2023, 44: 7. doi: 10.1007/s12036-022-09903-x
|
[5] |
Schmitt A J, Obenschain S P. The importance of laser wavelength for driving inertial confinement fusion targets. II. Target design[J]. Physics of Plasmas, 2023, 30: 012702. doi: 10.1063/5.0118093
|
[6] |
Kuang Yuanyuan, Lu Yan, Lin Zhi, et al. Coupled model analysis of the ablative Rayleigh–Taylor instability[J]. Plasma Science and Technology, 2023, 25: 055201. doi: 10.1088/2058-6272/acac64
|
[7] |
曹柱荣, 缪文勇, 董建军, 等. 烧蚀RT不稳定性X射线分幅诊断研究进展[J]. 物理学报, 2012, 61:075213 doi: 10.7498/aps.61.075213
Cao Zhurong, Miao Wenyong, Dong Jianjun, et al. Experiment progress of ablative Rayleigh-Taylor instability based on X-ray framing camera[J]. Acta Physica Sinica, 2012, 61: 075213. doi: 10.7498/aps.61.075213
|
[8] |
缪文勇, 袁永腾, 丁永坤, 等. 神光Ⅱ装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.11884/HPLPB201527.032016
Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation–driven Rayleigh-Taylor instability on the Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016. doi: 10.11884/HPLPB201527.032016
|
[9] |
Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/RF/CH tri-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Journal of Fusion Energy, 2016, 35(2): 357-364. doi: 10.1007/s10894-015-0037-y
|
[10] |
Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Fusion Engineering and Design, 2014, 89(4): 466-472. doi: 10.1016/j.fusengdes.2014.04.009
|
[11] |
朱秀榕, 周斌, 杜艾, 等. ICF分解实验用双介质调制靶的研制[J]. 强激光与粒子束, 2014, 26:012004 doi: 10.3788/HPLPB20142601.12004
Zhu Xiurong, Zhou Bin, Du Ai, et al. Fabrication of dual-layer perturbation target for ICF resolved experiments[J]. High Power Laser and Particle Beams, 2014, 26: 012004. doi: 10.3788/HPLPB20142601.12004
|
[12] |
孙骐, 周斌, 沈军, 等. ICF研究中的Rayleigh-Taylor不稳定性实验用靶[J]. 强激光与粒子束, 2004, 16(12):1535-1539
Sun Qi, Zhou Bin, Shen Jun, et al. Modulation targets in Rayleigh-Taylor instability experiments for the ICF study[J]. High Power Laser and Particle Beams, 2004, 16(12): 1535-1539.
|
[13] |
周斌, 孙骐, 黄耀东, 等. ICF分解实验中的平面调制靶和薄膜靶的研制[J]. 原子能科学技术, 2004, 38(1):79-83 doi: 10.3969/j.issn.1000-6931.2004.01.016
Zhou Bin, Sun Qi, Huang Yaodong, et al. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment[J]. Atomic Energy Science and Technology, 2004, 38(1): 79-83. doi: 10.3969/j.issn.1000-6931.2004.01.016
|
[14] |
Hsieh E J, Hatcher C W, Miller D E. Summary abstract: fabrication of Rayleigh–Taylor instability experiment targets[J]. Journal of Vacuum Science & Technology A, 1985, 3(3): 1278-1279.
|
[15] |
Schappert G T, Batha S H, Klare K A, et al. Rayleigh–Taylor spike evaporation[J]. Physics of Plasmas, 2001, 8(9): 4156-4162. doi: 10.1063/1.1386802
|
[16] |
黄燕华, 高党忠, 谢军, 等. 平面调制靶的正弦波曲面超精密加工与表征[J]. 强激光与粒子束, 2012, 24(6):1429-1433 doi: 10.3788/HPLPB20122406.1429
Huang Yanhua, Gao Dangzhong, Xie Jun, et al. Ultra-precision machining and characterizing of sinusoidal surface of surface perturbation target[J]. High Power Laser and Particle Beams, 2012, 24(6): 1429-1433. doi: 10.3788/HPLPB20122406.1429
|
[1] | Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002. doi: 10.11884/HPLPB202234.220238 |
[2] | Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(11): 112003. doi: 10.11884/HPLPB202234.220226 |
[3] | Kan Mingxian, Duan Shuchao, Wang Ganghua, Xiao Bo, Zhao Hailong. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32(8): 085002. doi: 10.11884/HPLPB202032.200072 |
[4] | Wu Yuji, Wang Qiuping, Wang Feng, Li Yulong, Jiang Shaoen. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31(3): 032001. doi: 10.11884/HPLPB201931.190045 |
[5] | Kan Mingxian, Duan Shuchao, Zhang Zhaohui, Xiao Bo, Wang Ganghua, Wang Guilin, Feng Chunsheng, Peng Jie. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31(6): 065001. doi: 10.11884/HPLPB201931.180300 |
[6] | Guo Fan, Wang Guilin, Zou Wenkang, Chen Lin, Xie Weiping. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30(12): 125001. doi: 10.11884/HPLPB201830.180239 |
[7] | Kan Mingxian, Duan Shuchao, Wang Ganghua, Yang Long, Zhang Zhaohui, Wang Guilin. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29(04): 045003. doi: 10.11884/HPLPB201729.160482 |
[8] | Guo Shuai, Wang Guilin, Zhang Zhaohui, Jia Yuesong, Sun Qizhi, Li Jun, Chi Yuan, Zhang Zhengwei, Zhao Xiaoming, Feng Shuping, Ji Ce, Wei Bing. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28(01): 015015. doi: 10.11884/HPLPB201628.015015 |
[9] | Ji Ce, Feng Shuping, Xia Minghe, Fu Zhen, Li Yong, Yao Bin, Wang Yujua. PTS experimental study on synchronization[J]. High Power Laser and Particle Beams, 2016, 28(01): 015021. doi: 10.11884/HPLPB201628.015021 |
[10] | Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138 |
[11] | Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003 |
[12] | Tian Qing, Jiang Ping, Xie Xingquan, Zeng Sifeng. PTS control system based on CORBA[J]. High Power Laser and Particle Beams, 2015, 27(04): 045003. doi: 10.11884/HPLPB201527.045003 |
[13] | Kan Mingxian, Wang Ganghua, Zhang Hongping, Zhao Hailong, Yang Long. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27(01): 015002. doi: 10.11884/HPLPB201527.015002 |
[14] | Xu Tao, Wei Huiyue, Wang Feng, Peng Xiaoshi. Speckle suppression in imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2014, 26(05): 052001. doi: 10.11884/HPLPB201426.052001 |
[15] | Wang Guilin, Li Jun, Zhang Zhaohui, Wang Ganghua, Zhou Rongguo, Ouyang Kai, Yang Liang, Wang Xiong, Zhang Zhengwei, Shen Zhaowu. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator[J]. High Power Laser and Particle Beams, 2014, 26(01): 015101. doi: 10.3788/HPLPB201426.015101 |
[16] | Kan Mingxian, Wang Ganghua, Zhao Hailong, Xie Long. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(08): 2137-2141. doi: 10.3788/HPLPB20132508.2137 |
[17] | Wang Weining, Wang Feng, Jiang Shao’en, Fu Shaojun. Accuracy examination of shock speed measurement by imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2012, 24(09): 2121-2124. doi: 10.3788/HPLPB20122409.2121 |
[18] | xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- . |
[19] | wang feng, peng xiaoshi, liu shenye, jiang xiaohua, ding yongkun. Data processing method of imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- . |
[20] | lu jian-xin, wang zhao, liang jing, shan yu-sheng, zhou chuang-zhi, xiang yi-huai, lu ze, tang xiu-zhang. Free-surface velocity measurements using an optically recording velocity interferometer[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- . |
1. | 赵志刚,赵镇,王德飞,刘虎,陈庆良. 用于DIRCM系统的激光源研究进展. 激光与红外. 2024(11): 1651-1658 . ![]() | |
2. | 黄佳裕,林海枫,闫培光. 高效率宽调谐扇形MgO:PPLN中红外光参量振荡器. 红外与激光工程. 2023(05): 114-119 . ![]() | |
3. | 程乃俊,李惟帆,祁峰. 中红外激光器研究进展. 激光与光电子学进展. 2023(17): 71-88 . ![]() |