He Yang, Chen Fei, Wan Haohua, et al. Fiber-laser-pumped high-power mid-infrared optical parametric oscillator based on MgO: PPLN crystal[J]. High Power Laser and Particle Beams, 2022, 34: 031003. doi: 10.11884/HPLPB202234.210308
Citation: Lin Zude, Dai Yu, Xu Mengfei, et al. ICF modulation targets based on high-precision 3D printing technology[J]. High Power Laser and Particle Beams, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146

ICF modulation targets based on high-precision 3D printing technology

doi: 10.11884/HPLPB202335.230146
  • Received Date: 2023-05-23
  • Accepted Date: 2023-09-16
  • Rev Recd Date: 2023-09-15
  • Available Online: 2023-09-19
  • Publish Date: 2023-10-08
  • Rayleigh-Taylor instability (RTI) research in inertial confinement fusion (ICF) is based on modulation targets with multiple structures. In this paper, aiming at the present problems existing in the preparation of modulation targets, three typical modulation targets of planar modulation, planar composite modulation and spherical shell modulation have been prepared by two-photon 3D printing process. The target material is photosensitive resin (95%: C23H38N2O8, 5%: C4H6O2). The actual structural parameters of the three modulation targets were analyzed using laser confocal microscopy imaging. The measured morphologies and parameters of the three targets show good matching with the designed structures. To further validate the feasibility of using new two-photon 3D printing process for preparing modulation targets, nanosecond laser targeting experiments were conducted on the “Shenguang II” high-power laser experimental facility. The results show that the modulation of the target surface increased with time due to the action of RTI under direct laser driving. The modulation with an initial peak valley value of 4 μm formed a high-density jet with a length of up to 100 μm after 2.5 ns of laser driving, which indicates that the preparation of complex modulation targets based on high-precision 3D printing technology is highly feasible for RTI research.
  • [1]
    单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
    [2]
    王淦昌, 王乃彦. 惯性约束核聚变的进展和展望(I)[J]. 核科学与工程, 1989, 9(3):193-207

    Wang Ganchang, Wang Naiyan. The progress and prospect in the inertial confinement fusion[J]. Chinese Journal of Nuclear Science and Engineering, 1989, 9(3): 193-207.
    [3]
    李恩德, 杨泽平, 官春林, 等. 我国惯性约束聚变领域中的波前控制技术[J]. 光电工程, 2020, 47:200344

    Li Ende, Yang Zeping, Guan Chunlin, et al. Wavefront control technology for ICF facility in China[J]. Opto-Electronic Engineering, 2020, 47: 200344.
    [4]
    Khan N, Sharma P K. Investigation of Rayleigh–Taylor instability and internal waves in strongly coupled rotating magnetized quantum plasma[J]. Journal of Astrophysics and Astronomy, 2023, 44: 7. doi: 10.1007/s12036-022-09903-x
    [5]
    Schmitt A J, Obenschain S P. The importance of laser wavelength for driving inertial confinement fusion targets. II. Target design[J]. Physics of Plasmas, 2023, 30: 012702. doi: 10.1063/5.0118093
    [6]
    Kuang Yuanyuan, Lu Yan, Lin Zhi, et al. Coupled model analysis of the ablative Rayleigh–Taylor instability[J]. Plasma Science and Technology, 2023, 25: 055201. doi: 10.1088/2058-6272/acac64
    [7]
    曹柱荣, 缪文勇, 董建军, 等. 烧蚀RT不稳定性X射线分幅诊断研究进展[J]. 物理学报, 2012, 61:075213 doi: 10.7498/aps.61.075213

    Cao Zhurong, Miao Wenyong, Dong Jianjun, et al. Experiment progress of ablative Rayleigh-Taylor instability based on X-ray framing camera[J]. Acta Physica Sinica, 2012, 61: 075213. doi: 10.7498/aps.61.075213
    [8]
    缪文勇, 袁永腾, 丁永坤, 等. 神光Ⅱ装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.11884/HPLPB201527.032016

    Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation–driven Rayleigh-Taylor instability on the Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016. doi: 10.11884/HPLPB201527.032016
    [9]
    Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/RF/CH tri-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Journal of Fusion Energy, 2016, 35(2): 357-364. doi: 10.1007/s10894-015-0037-y
    [10]
    Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Fusion Engineering and Design, 2014, 89(4): 466-472. doi: 10.1016/j.fusengdes.2014.04.009
    [11]
    朱秀榕, 周斌, 杜艾, 等. ICF分解实验用双介质调制靶的研制[J]. 强激光与粒子束, 2014, 26:012004 doi: 10.3788/HPLPB20142601.12004

    Zhu Xiurong, Zhou Bin, Du Ai, et al. Fabrication of dual-layer perturbation target for ICF resolved experiments[J]. High Power Laser and Particle Beams, 2014, 26: 012004. doi: 10.3788/HPLPB20142601.12004
    [12]
    孙骐, 周斌, 沈军, 等. ICF研究中的Rayleigh-Taylor不稳定性实验用靶[J]. 强激光与粒子束, 2004, 16(12):1535-1539

    Sun Qi, Zhou Bin, Shen Jun, et al. Modulation targets in Rayleigh-Taylor instability experiments for the ICF study[J]. High Power Laser and Particle Beams, 2004, 16(12): 1535-1539.
    [13]
    周斌, 孙骐, 黄耀东, 等. ICF分解实验中的平面调制靶和薄膜靶的研制[J]. 原子能科学技术, 2004, 38(1):79-83 doi: 10.3969/j.issn.1000-6931.2004.01.016

    Zhou Bin, Sun Qi, Huang Yaodong, et al. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment[J]. Atomic Energy Science and Technology, 2004, 38(1): 79-83. doi: 10.3969/j.issn.1000-6931.2004.01.016
    [14]
    Hsieh E J, Hatcher C W, Miller D E. Summary abstract: fabrication of Rayleigh–Taylor instability experiment targets[J]. Journal of Vacuum Science & Technology A, 1985, 3(3): 1278-1279.
    [15]
    Schappert G T, Batha S H, Klare K A, et al. Rayleigh–Taylor spike evaporation[J]. Physics of Plasmas, 2001, 8(9): 4156-4162. doi: 10.1063/1.1386802
    [16]
    黄燕华, 高党忠, 谢军, 等. 平面调制靶的正弦波曲面超精密加工与表征[J]. 强激光与粒子束, 2012, 24(6):1429-1433 doi: 10.3788/HPLPB20122406.1429

    Huang Yanhua, Gao Dangzhong, Xie Jun, et al. Ultra-precision machining and characterizing of sinusoidal surface of surface perturbation target[J]. High Power Laser and Particle Beams, 2012, 24(6): 1429-1433. doi: 10.3788/HPLPB20122406.1429
  • Relative Articles

    [1]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002. doi: 10.11884/HPLPB202234.220238
    [2]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(11): 112003. doi: 10.11884/HPLPB202234.220226
    [3]Kan Mingxian, Duan Shuchao, Wang Ganghua, Xiao Bo, Zhao Hailong. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32(8): 085002. doi: 10.11884/HPLPB202032.200072
    [4]Wu Yuji, Wang Qiuping, Wang Feng, Li Yulong, Jiang Shaoen. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31(3): 032001. doi: 10.11884/HPLPB201931.190045
    [5]Kan Mingxian, Duan Shuchao, Zhang Zhaohui, Xiao Bo, Wang Ganghua, Wang Guilin, Feng Chunsheng, Peng Jie. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31(6): 065001. doi: 10.11884/HPLPB201931.180300
    [6]Guo Fan, Wang Guilin, Zou Wenkang, Chen Lin, Xie Weiping. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30(12): 125001. doi: 10.11884/HPLPB201830.180239
    [7]Kan Mingxian, Duan Shuchao, Wang Ganghua, Yang Long, Zhang Zhaohui, Wang Guilin. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29(04): 045003. doi: 10.11884/HPLPB201729.160482
    [8]Guo Shuai, Wang Guilin, Zhang Zhaohui, Jia Yuesong, Sun Qizhi, Li Jun, Chi Yuan, Zhang Zhengwei, Zhao Xiaoming, Feng Shuping, Ji Ce, Wei Bing. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28(01): 015015. doi: 10.11884/HPLPB201628.015015
    [9]Ji Ce, Feng Shuping, Xia Minghe, Fu Zhen, Li Yong, Yao Bin, Wang Yujua. PTS experimental study on synchronization[J]. High Power Laser and Particle Beams, 2016, 28(01): 015021. doi: 10.11884/HPLPB201628.015021
    [10]Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138
    [11]Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003
    [12]Tian Qing, Jiang Ping, Xie Xingquan, Zeng Sifeng. PTS control system based on CORBA[J]. High Power Laser and Particle Beams, 2015, 27(04): 045003. doi: 10.11884/HPLPB201527.045003
    [13]Kan Mingxian, Wang Ganghua, Zhang Hongping, Zhao Hailong, Yang Long. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27(01): 015002. doi: 10.11884/HPLPB201527.015002
    [14]Xu Tao, Wei Huiyue, Wang Feng, Peng Xiaoshi. Speckle suppression in imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2014, 26(05): 052001. doi: 10.11884/HPLPB201426.052001
    [15]Wang Guilin, Li Jun, Zhang Zhaohui, Wang Ganghua, Zhou Rongguo, Ouyang Kai, Yang Liang, Wang Xiong, Zhang Zhengwei, Shen Zhaowu. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator[J]. High Power Laser and Particle Beams, 2014, 26(01): 015101. doi: 10.3788/HPLPB201426.015101
    [16]Kan Mingxian, Wang Ganghua, Zhao Hailong, Xie Long. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(08): 2137-2141. doi: 10.3788/HPLPB20132508.2137
    [17]Wang Weining, Wang Feng, Jiang Shao’en, Fu Shaojun. Accuracy examination of shock speed measurement by imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2012, 24(09): 2121-2124. doi: 10.3788/HPLPB20122409.2121
    [18]xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [19]wang feng, peng xiaoshi, liu shenye, jiang xiaohua, ding yongkun. Data processing method of imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- .
    [20]lu jian-xin, wang zhao, liang jing, shan yu-sheng, zhou chuang-zhi, xiang yi-huai, lu ze, tang xiu-zhang. Free-surface velocity measurements using an optically recording velocity interferometer[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
  • Cited by

    Periodical cited type(3)

    1. 赵志刚,赵镇,王德飞,刘虎,陈庆良. 用于DIRCM系统的激光源研究进展. 激光与红外. 2024(11): 1651-1658 .
    2. 黄佳裕,林海枫,闫培光. 高效率宽调谐扇形MgO:PPLN中红外光参量振荡器. 红外与激光工程. 2023(05): 114-119 .
    3. 程乃俊,李惟帆,祁峰. 中红外激光器研究进展. 激光与光电子学进展. 2023(17): 71-88 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 61.4 %META: 61.4 %PDF: 8.0 %PDF: 8.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %其他: 0.3 %其他: 0.3 %Beauharnois: 0.1 %Beauharnois: 0.1 %Kamphaeng Phet: 0.1 %Kamphaeng Phet: 0.1 %North Point: 0.3 %North Point: 0.3 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.4 %United States: 0.4 %[]: 0.1 %[]: 0.1 %上海: 1.7 %上海: 1.7 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.3 %保定: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 0.9 %北京: 0.9 %十堰: 0.3 %十堰: 0.3 %南京: 0.5 %南京: 0.5 %南昌: 0.1 %南昌: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %圣何塞: 0.3 %圣何塞: 0.3 %天津: 0.5 %天津: 0.5 %宁波: 0.3 %宁波: 0.3 %宜春: 0.1 %宜春: 0.1 %宣城: 0.6 %宣城: 0.6 %常州: 0.4 %常州: 0.4 %常德: 0.9 %常德: 0.9 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 2.9 %张家口: 2.9 %成都: 4.5 %成都: 4.5 %扬州: 0.5 %扬州: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.8 %昆明: 0.8 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.4 %济南: 0.4 %淄博: 0.1 %淄博: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %漯河: 2.4 %漯河: 2.4 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 32.2 %芒廷维尤: 32.2 %芝加哥: 0.1 %芝加哥: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 24.6 %西宁: 24.6 %西安: 0.3 %西安: 0.3 %诺沃克: 6.8 %诺沃克: 6.8 %贵阳: 0.5 %贵阳: 0.5 %费利蒙: 0.4 %费利蒙: 0.4 %资阳: 0.4 %资阳: 0.4 %运城: 1.1 %运城: 1.1 %遵义: 0.5 %遵义: 0.5 %郑州: 0.6 %郑州: 0.6 %重庆: 0.5 %重庆: 0.5 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %青岛: 0.4 %青岛: 0.4 %其他其他BeauharnoisKamphaeng PhetNorth PointSeattleUnited States[]上海临汾丹东保定兰州北京十堰南京南昌台州合肥哈尔滨哥伦布嘉兴圣何塞天津宁波宜春宣城常州常德平顶山广州张家口成都扬州无锡昆明晋城普洱朝阳杭州格兰特县武汉沈阳济南淄博深圳温州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安诺沃克贵阳费利蒙资阳运城遵义郑州重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (478) PDF downloads(77) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return