Citation: | Guo Yipan, Su Yangfan, Zhang Tonglin, et al. Study on Fe11+ ion irradiation damage of 7075 aluminum alloy[J]. High Power Laser and Particle Beams, 2023, 35: 104003. doi: 10.11884/HPLPB202335.230154 |
[1] |
王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1):395-399
Wang Huifen, Yang Biqi, Liu Gang. Application status and future prospect of materials for spacecraft structures[J]. Materials Review, 2018, 32(S1): 395-399.
|
[2] |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. doi: 10.1007/s11661-012-1155-z
|
[3] |
Yeganefar A, Niknam S A, Songmene V. Machinability study of aircraft series aluminium alloys 7075-T6 and 7050-T7451[J]. Transactions of the Canadian Society for Mechanical Engineering, 2020, 44(3): 427-439. doi: 10.1139/tcsme-2019-0215
|
[4] |
Hu Yuting, Li Shuncai, Yu Qiu, et al. Investigation of tensile and compressive mechanical properties of typical aerospace alloy materials[J]. Transactions of the Canadian Society for Mechanical Engineering, 2021, 45(4): 612-625. doi: 10.1139/tcsme-2020-0207
|
[5] |
Sivaraman P, Prabhu M K, Nithyanandhan T, et al. Development of aluminum based AA 2014 and AA 7075 dissimilar metals for aerospace applications[J]. Materials Today: Proceedings, 2021, 37: 522-526. doi: 10.1016/j.matpr.2020.05.486
|
[6] |
Ramkumar K R, Sivasankaran S, Al-Mufadi F A, et al. Investigations on microstructure, mechanical, and tribological behaviour of AA 7075- xwt.% TiC composites for aerospace applications[J]. Archives of Civil and Mechanical Engineering, 2019, 19(2): 428-438. doi: 10.1016/j.acme.2018.12.003
|
[7] |
Ma Kaka, Wen Haiming, Hu Tao, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042
|
[8] |
王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1):1-8
Wang Changhe. The influence with reliability of motional satellite by the single-event phenomena[J]. Semiconductor Intelligence, 1998, 35(1): 1-8.
|
[9] |
Oksengendler B L, Maksimov S E, Turaeva N N, et al. Synergetic theory of catastrophic failures in the problem of radiation stability of solid-state electronics materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 326: 45-47.
|
[10] |
王佩. 单粒子效应电路模拟方法研究[D]. 成都: 电子科技大学, 2010: 12
Wang Pei. Research on simulation methods of single-particle effect circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2010: 12.
|
[11] |
Ni Kai, Ma Qian, Wan Hao, et al. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys[J]. Materials Research Express, 2018, 5: 026514. doi: 10.1088/2053-1591/aaaca5
|
[12] |
Serventi A M, Antisari M V, Guzman L, et al. Microstructure and mechanical properties of a N+ implanted Al alloy[J]. Philosophical Magazine B, 1997, 76(4): 549-557. doi: 10.1080/01418639708241121
|
[13] |
Soria S R, Tolley A J, Sánchez E A. Defects induced by helium ion irradiation in aluminum alloys[J]. Procedia Materials Science, 2015, 8: 486-493. doi: 10.1016/j.mspro.2015.04.100
|
[14] |
Wan Hao, Si Naichao, Wang Quan, et al. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy[J]. Materials Research Express, 2018, 5: 026501. doi: 10.1088/2053-1591/aaa915
|
[15] |
Do S C, Kim K W, Jeong J H. The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation[J]. Heat and Mass Transfer, 2015, 51(4): 487-495. doi: 10.1007/s00231-014-1424-z
|
[16] |
Soria S R, Tolley A, Sánchez E A. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys[J]. Journal of Nuclear Materials, 2015, 467: 357-367. doi: 10.1016/j.jnucmat.2015.09.051
|
[17] |
史全岐, 张江, 乐超, 等. 地月空间粒子辐射环境及其对月表物质的影响研究进展[J]. 地球物理学报, 2023, 66(7):2685-2702
Shi Quanqi, Zhang Jiang, Le Chao, et al. Review of particle radiation environment of the Earth-Moon space and its impact on Lunar surficial material generation[J]. Chinese Journal of Geophysics, 2023, 66(7): 2685-2702.
|
[18] |
方美华. 深空辐射粒子在介质材料中的输运及损伤研究[D]. 南京: 南京航空航天大学, 2011
Fang Meihua. Study on deep space radiation transport and radiation damage in materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
|
[19] |
Ziegler J F, Ziegler M D, Biersack J P. SRIM – The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.
|
[20] |
Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption[J]. Journal of Nuclear Materials, 2013, 435(1/3): 77-87.
|
[21] |
Hapsari S, Sujitno T, Ahmadi H, et al. Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties of aluminum alloy 7075[J]. Journal of Physics: Conference Series, 2020, 1436: 012075. doi: 10.1088/1742-6596/1436/1/012075
|
[22] |
张小楠. Fe、Ni基金属玻璃的离子辐照损伤研究[D]. 大连: 大连理工大学, 2019
Zhang Xiaonan. Ion irradiation damage study of Fe and Ni-based metallic glass[D]. Dalian: Dalian University of Technology, 2019.
|
[23] |
Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by Nano-indentation techniques[J]. Fusion Engineering and Design, 2011, 86(9/11): 2658-2661.
|
[24] |
Nix W D, Gao Huajian. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425. doi: 10.1016/S0022-5096(97)00086-0
|
[25] |
闫占峰, 郑健, 周韦, 等. 6061-Al合金的自离子辐照损伤效应[J]. 强激光与粒子束, 2022, 34:056008 doi: 10.11884/HPLPB202234.210509
Yan Zhanfeng, Zheng Jian, Zhou Wei, et al. The self-ion irradiation effects in 6061-Al alloy[J]. High Power Laser and Particle Beams, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509
|
[26] |
郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 239-241
Yu Jinnan. Material irradiation effect[M]. Beijing: Chemical Industry Press, 2007: 239-241.
|
[27] |
Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals[J]. Journal of Nuclear Materials, 2000, 276(1/3): 65-77.
|
[28] |
Osetsky Y N, Bacon D J. Atomic-scale modelling of primary damage and properties of radiation defects in metals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 202: 31-43.
|
[29] |
范嘉琪, 杨义涛, 丁兆楠, 等. 两种国产低活化的铁素体/马氏体钢的He离子辐照硬化研究[J]. 原子核物理评论, 2017, 34(2):219-225
Fan Jiaqi, Yang Yitao, Ding Zhaonan, et al. Helium-implantation induced hardening of two low-activation ferritic/martensitic steels of China[J]. Nuclear Physics Review, 2017, 34(2): 219-225.
|
[30] |
丁兆楠, 杨义涛, 宋银, 等. 高能重离子辐照的低活化钢硬化效应[J]. 物理学报, 2017, 66:112501 doi: 10.7498/aps.66.112501
Ding Zhaonan, Yang Yitao, Song Yin, et al. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion[J]. Acta Physica Sinica, 2017, 66: 112501. doi: 10.7498/aps.66.112501
|