Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Citation: Xiong Zhao, Yin Lingyu, Pei Guoqing, et al. Intelligent assembly scheduling for large laser devices[J]. High Power Laser and Particle Beams, 2023, 35: 092002. doi: 10.11884/HPLPB202335.230170

Intelligent assembly scheduling for large laser devices

doi: 10.11884/HPLPB202335.230170
  • Received Date: 2023-06-06
  • Accepted Date: 2023-08-25
  • Rev Recd Date: 2023-08-25
  • Available Online: 2023-08-31
  • Publish Date: 2023-09-15
  • Aiming at the assembly scheduling problem of optical and mechanical modules for large laser devices, a scheduling priority rule acquisition method based on artificial neural networks (ANNs) is proposed. In the offline phase, this method optimizes the scheduling data through genetic algorithms, extracts task comparison trajectories and feature data from the optimization solution, and uses ANNs to learn the task priority comparison model. In the online phase, a closed-loop decision scheduling mode is constructed based on this model to achieve rapid response and accurate decision-making in dynamic uncertain production environments. Data experiments and practical application cases verify the effectiveness of this method. With the increase of the number of optical-mechanical modules, the advantages of ANN scheduling algorithm become more obvious. When the optimization results of ANN scheduling algorithm and GA algorithm are less than 6%, the computational efficiency of the former is more than 400 times that of the latter.
  • [1]
    郑万国, 邓颖, 周维, 等. 激光聚变研究中心激光技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3082-3090 doi: 10.3788/HPLPB20132512.3082

    Zheng Wanguo, Deng Ying, ZhouWei, et al. Development of laser technology in research center of laser fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3082-3090 doi: 10.3788/HPLPB20132512.3082
    [2]
    Panwalkar SS, Iskander W. A survey of scheduling rules[J]. Operations Research, 1977, 25(1): 45-61. doi: 10.1287/opre.25.1.45
    [3]
    张泽群, 唐敦兵, 金永乔, 等. 信息物联驱动下的离散车间自组织生产调度技术[J]. 机械工程学报, 2018, 54(16):34-44 doi: 10.3901/JME.2018.16.034

    Zhang Zequn, Tang Dunbing, JinYongqiao, et al. Self-organizing production technology for discrete workshop scheduling driven by internet of things[J]. Journal of Mechanical Engineering, 2018, 54(16): 34-44 doi: 10.3901/JME.2018.16.034
    [4]
    龙田, 石宇强, 王俊佳. 柔性作业车间在线调度问题的仿真建模与分析[J]. 机械设计与制造, 2015(12):27-30 doi: 10.3969/j.issn.1001-3997.2015.12.008

    Long Tian, Shi Yuqiang, Wang Junjia. Simulation modeling and analysis for online flexible job-shop scheduling problem[J]. Machinery Design & Manufacture, 2015(12): 27-30 doi: 10.3969/j.issn.1001-3997.2015.12.008
    [5]
    Burke E K, Hyde M, Kendall G, et al. A survey of hyper-heuristics[R]. Nottingham: University of Nottingham, 2009.
    [6]
    范华丽, 熊禾根, 蒋国璋, 等. 动态车间作业调度问题中调度规则算法研究综述[J]. 计算机应用研究, 2016, 33(3):648-653 doi: 10.3969/j.issn.1001-3695.2016.03.002

    Fan Huali, Xiong Hegen, Jiang Guozhang, et al. Survey of dispatching rulesfor dynamic job-shop scheduling problem[J]. Application Research of Computers, 2016, 33(3): 648-653 doi: 10.3969/j.issn.1001-3695.2016.03.002
    [7]
    Mouelhi-Chibani W, Pierreval H. Training a neural network to select dispatching rules in real time[J]. Computers & Industrial Engineering, 2010, 58(2): 249-256.
    [8]
    Golmohammadi D. A neural network decision-making model for job-shop scheduling[J]. International Journal of Production Research, 2013, 51(17): 5142-5157. doi: 10.1080/00207543.2013.793476
    [9]
    Zhang Liping, Hu Yifan, Wang Chuangjian, et al. Effective dispatching rules mining based on near-optimal schedules in intelligent job shop environment[J]. Journal of Manufacturing Systems, 2022, 63: 424-438. doi: 10.1016/j.jmsy.2022.04.019
    [10]
    Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: The MIT Press, 1992.
  • Relative Articles

    [1]Zhang Tiankui, Shan Lianqiang, Yu Minghai, Lu Feng, Zhou Weimin, Tian Chao, Tan Fang, Yan Yonghong, Zhang Feng, Yuan Zongqiang, Xu Qiuyue, Wang Weiwu, Deng Zhigang, Teng Jian, Liu Dongxiao, Yang Lei, Fan Wei, Yang Yue, Zhou Kainan, Su Jingqin, Wu Yuchi, Ding Yongkun, Gu Yuqiu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001. doi: 10.11884/HPLPB202234.220186
    [2]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [3]Cao Leifeng, Yang Zuhua, Chen Jihui, Wei Lai, Fan Quanping, Chen Yong, Zhang Qiangqiang, Zhou Weimin. Conceptual design of soft X-ray online calibration system for ICF[J]. High Power Laser and Particle Beams, 2020, 32(11): 112007. doi: 10.11884/HPLPB202032.200141
    [4]Sun Ao, Shang Wanli, Yang Guohong, Wei Minxi, Li Miao, Che Xingsen, Hou Lifei, Du Huabing, Yang Yimeng, Zhang Wenhai, Yang Dong, Wang Feng, He Haien, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32(11): 112008. doi: 10.11884/HPLPB202032.200129
    [5]Cao Zhurong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yukun, Wang Peng, Chen Bolun, Wang Feng, He Haien, Li Xingzhu, Xu Zeping, Yang Dong, Yang Jiamin, Jiang Shaoen, Ding Yongkun, Zhang Weiyan. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004. doi: 10.11884/HPLPB202032.200099
    [6]Xu Jie, Mu Baozhong, Chen Liang, Li Wenjie, Xu Xinye, Wang Xin, Wang Zhanshan, Zhang Xing, Ding Yongkun. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32(11): 112001. doi: 10.11884/HPLPB202032.200133
    [7]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [8]Xie Jun, Zhang Zhaorui, Mei Lusheng, Huang Yanhua, Zhu Lei, Liu Feng, Zhang Haijun, Li Guo, Song Chengwei. Fabrication of diagnostic hole of SiO2/CH/Au hohlraum by micro-electrical discharge machining[J]. High Power Laser and Particle Beams, 2014, 26(11): 112002. doi: 10.11884/HPLPB201426.112002
    [9]Wang Rui, Peng Long, Li Lezhong. Method for diagnosis and tuning of cross-coupled resonator bandstop and bandpass filters with source-load coupling[J]. High Power Laser and Particle Beams, 2014, 26(11): 113007. doi: 10.11884/HPLPB201426.113007
    [10]Tang Qi, Song Zifeng, Chen Jiabin, Zhan Xiayu. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method[J]. High Power Laser and Particle Beams, 2013, 25(12): 3153-3157. doi: 3153
    [11]He Tie, Lei Jiarong, Liu Meng, An Li, Wang Xinhua, Zheng Pu. Fen+ beam profile diagnostics based on Al2O3:Cr scintillating screen[J]. High Power Laser and Particle Beams, 2013, 25(04): 1013-1016.
    [12]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [13]Yi Shengzhen, Mu Baozhong, Wang Xin, Jiang Li, Zhu Jingtao, Wang Zhanshan, Fang Zhiheng, Wang Wei, Fu Sizu. One-dimensional KBA microscope for planar target diagnosis[J]. High Power Laser and Particle Beams, 2012, 24(05): 1076-1080. doi: 10.3788/HPLPB20122405.1076
    [14]li yawei, deng jianjun, xie min, feng zongming, liu yuntao, ma chenggang. Measurement and diagnosis system for 1.2 MV repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [15]liu lifeng, xiao shali, wang hongjian, shi jun, liu shenye, wei minxi, chen bolun, qian jiayu. Application of spherically bent crystals spectrometer to X-ray diagnosis[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [16]wang jia-yin, shi jia-ming, yuan zhong-cai, xu bo. Plasma diagnostic method using the transmission attenuation of microwaves at three frequencies[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [17]zheng zhi jian, ding yong kun, ding yao nan, liu zhong li, liu shen ye, sun ke xu, cheng jin xiu, jiang shao en, qi lan ying, zhang bao han, yang cun bang. yang jia min, su chun xiao, chen jia bin, li wen hong, yi rong qing, tang dao yuan, . Recent progress and application of diagnostic technique in laser fusion[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- .
    [18]deng jian jun, chen si fu, li jing, chang li hua, yang guo jun, lin yu zheng. Time resolved energy spectrum diagnostics for 2MeV injector pulsed electron beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [19]hu hai-ying, li xu-dong, chen dai-bing. Diagnosis on the frequency spectrum of the X-band transit time tube oscillator[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 高斌,裴士伦,王辉,赵世琦,池云龙. S波段HYBRID聚束-加速结构的样机研制. 强激光与粒子束. 2021(02): 94-100 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 71.1 %META: 71.1 %PDF: 8.3 %PDF: 8.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.6 %其他: 0.6 %Beauharnois: 0.0 %Beauharnois: 0.0 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Mongolia: 0.0 %Mongolia: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Trumansburg: 0.1 %Trumansburg: 0.1 %United States: 0.6 %United States: 0.6 %[]: 1.3 %[]: 1.3 %上海: 6.0 %上海: 6.0 %东京: 0.1 %东京: 0.1 %东莞: 0.5 %东莞: 0.5 %中卫: 0.0 %中卫: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %乐山: 0.1 %乐山: 0.1 %九龙: 0.1 %九龙: 0.1 %伊萨卡: 0.1 %伊萨卡: 0.1 %伦敦: 0.1 %伦敦: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.0 %六安: 0.0 %兰州: 0.5 %兰州: 0.5 %内华达: 0.0 %内华达: 0.0 %内江: 0.1 %内江: 0.1 %北京: 14.2 %北京: 14.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.6 %南京: 0.6 %南充: 0.0 %南充: 0.0 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.8 %合肥: 0.8 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %埃森: 0.1 %埃森: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %威海: 0.1 %威海: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宣城: 0.2 %宣城: 0.2 %宿州: 0.0 %宿州: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %巴音郭楞蒙古自治州: 0.1 %巴音郭楞蒙古自治州: 0.1 %广州: 0.4 %广州: 0.4 %延安: 0.0 %延安: 0.0 %弗里蒙特: 0.1 %弗里蒙特: 0.1 %张家口: 1.9 %张家口: 1.9 %徐州: 0.2 %徐州: 0.2 %成都: 2.2 %成都: 2.2 %扬州: 0.1 %扬州: 0.1 %揭阳: 0.0 %揭阳: 0.0 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.8 %杭州: 0.8 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %汉中: 0.0 %汉中: 0.0 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.1 %淮南: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 0.5 %漯河: 0.5 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.5 %福州: 0.5 %科林斯堡: 0.0 %科林斯堡: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.0 %纽瓦克: 0.0 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.4 %绵阳: 1.4 %绵阳市涪城区: 0.0 %绵阳市涪城区: 0.0 %美国伊利诺斯芝加哥: 0.4 %美国伊利诺斯芝加哥: 0.4 %芒廷维尤: 14.9 %芒廷维尤: 14.9 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.2 %葫芦岛: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 28.7 %西宁: 28.7 %西安: 2.7 %西安: 2.7 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %赣州: 0.0 %赣州: 0.0 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.7 %运城: 0.7 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %金华: 0.0 %金华: 0.0 %金昌: 0.0 %金昌: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.1 %鞍山: 0.1 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %魁北克: 0.2 %魁北克: 0.2 %其他其他BeauharnoisChinaIndiaMongoliaTaiwan, ChinaTrumansburgUnited States[]上海东京东莞中卫中山临汾丹东乐山九龙伊萨卡伦敦保定六安兰州内华达内江北京十堰南京南充南昌南通台州合肥咸阳哈尔滨哥伦布埃森大连天津太原威海安庆安康宣城宿州密蘇里城巴音郭楞蒙古自治州广州延安弗里蒙特张家口徐州成都扬州揭阳新乡无锡昆明晋中晋城普洱朝阳杭州株洲格兰特县桂林梅州武汉汉中汕头沈阳洛阳济南淮南深圳温州湖州漯河石家庄福州科林斯堡秦皇岛纽瓦克纽约绍兴绵阳绵阳市涪城区美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安西雅图贵阳费利蒙赣州达拉斯运城连云港邯郸郑州重庆金华金昌长春长沙长治青岛鞍山香港香港特别行政区魁北克

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (520) PDF downloads(73) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return