Wu Zhaokui, Ma Yuncan, He Xu, et al. Laser path adjusting system for laser experiments based on LabVIEW[J]. High Power Laser and Particle Beams, 2017, 29: 051005. doi: 10.11884/HPLPB201729.160503
Citation: Cui Qinglong, Wei Jianglong, Xie Yahong, et al. Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system[J]. High Power Laser and Particle Beams, 2023, 35: 114001. doi: 10.11884/HPLPB202335.230179

Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system

doi: 10.11884/HPLPB202335.230179
  • Received Date: 2023-06-14
  • Accepted Date: 2023-10-16
  • Rev Recd Date: 2023-10-16
  • Available Online: 2023-10-21
  • Publish Date: 2023-11-11
  • The negative ion based neutral beam injection (NNBI) system is one of the testing or demonstrating systems in the frameworks of Comprehensive Research Facility of Fusion Technology (CRAFT). The object of the CRAFT NNBI system is to research the key physics and engineering issues around the NNBI, and to accumulate experience for future development and operation of the NNBI system for fusion reactor. The beamlet optics character of a negative ion accelerator determines the divergence of the formed beam, and further influences the beam transmission efficiency through the accelerator and the beamline, which is very important to the high-power, high-energy, and long-pulse operation of the NNBI system. Therefore, the ion beam simulation code IBSimu was used to analyze and estimate the physics design of the beamlet optics of the 400 keV accelerator for the CRAFT NNBI system. The IBSimu code has been successfully benchmarked and applied to many negative ion sources. The current design of the electrode aperture has a similar structure of the ITER negative ion source, the calculation results of the beamlet divergence can meet the design requirement. A higher extracted ion current density (between 100 to 300 A/m2) draws a lower beamlet divergence. When properly increasing the extraction gap (between 5 to 7 mm) or acceleration gap (between 88 to 110 mm), there is a decreasing tendency of the beamlet divergence.
  • [1]
    Takeiri Y. Negative ion source development for fusion application (invited)[J]. Review of Scientific Instruments, 2010, 81: 02B114. doi: 10.1063/1.3274806
    [2]
    Kashiwagi M, Hiratsuka J, Ichikawa M, et al. 100 s negative ion accelerations for the JT–60SA negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2022, 62: 026025. doi: 10.1088/1741-4326/ac388a
    [3]
    Tsumori K, Ikeda K, Kisaki M, et al. Challenges toward improvement of deuterium-injection power in the Large Helical Device negative-ion-based NBIs[J]. Nuclear Fusion, 2022, 62: 056016. doi: 10.1088/1741-4326/ac2d59
    [4]
    Hemsworth R S, Boilson D, Blatchford P, et al. Overview of the design of the ITER heating neutral beam injectors[J]. New Journal of Physics, 2017, 19: 025005. doi: 10.1088/1367-2630/19/2/025005
    [5]
    Xie Yanghong, Hu Chundong, Wei Jianglong, et al. Conceptual design of a beam source for negative neutral beam injector of CRAFT facility[J]. Fusion Engineering and Design, 2021, 167: 112377. doi: 10.1016/j.fusengdes.2021.112377
    [6]
    Bacal M, Wada M. Negative hydrogen ion production mechanisms[J]. Applied Physics Reviews, 2015, 2: 021305. doi: 10.1063/1.4921298
    [7]
    Wei Jianglong, Hu Chundong, Xie Yahong, et al. Physics and engineering design of 400 keV H accelerator for negative ion based neutral beam injection system in China[J]. Review of Scientific Instruments, 2019, 90: 113313. doi: 10.1063/1.5128335
    [8]
    Wei Jianglong, Yang Yuwen, Gu Yuming, et al. An integration design model for a large-scale negative ion accelerator of neutral beam injection system for fusion application[J]. Physics of Plasmas, 2023, 30: 033102. doi: 10.1063/5.0139827
    [9]
    Brown I G. The physics and technology of ion sources[M]. 2nd ed. Weinhein, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
    [10]
    Pamela J. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results[J]. Review of Scientific Instruments, 1991, 62(5): 1163-1172. doi: 10.1063/1.1141995
    [11]
    Becker R. NIGUN: A two-dimensional simulation program for the extraction of H ions[J]. Review of Scientific Instruments, 2004, 75(5): 1723-1725. doi: 10.1063/1.1695610
    [12]
    Kalvas T, Tarvainen O, Ropponen T, et al. IBSIMU: a three-dimensional simulation software for charged particle optics[J]. Review of Scientific Instruments, 2010, 81: 02B703. doi: 10.1063/1.3258608
    [13]
    王惠三, 简广德, 周才品. 高能强流负离子束系统束光学特性的数值模拟[J]. 核聚变与等离子体物理, 2000, 20(2):93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005

    Wang Huisan, Jian Guangde, Zhou Caipin. Numerical simulation of the beam optics characteristics in a high energy and high current negative ion beam system[J]. Nuclear Fusion and Plasma Physics, 2000, 20(2): 93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005
    [14]
    De Esch H P L, Kashiwagi M, Taniguchi M, et al. Physics design of the HNB accelerator for ITER[J]. Nuclear Fusion, 2015, 55: 096001. doi: 10.1088/0029-5515/55/9/096001
    [15]
    Agostinetti P, Aprile D, Antoni V, et al. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI[J]. Nuclear Fusion, 2016, 56: 016015. doi: 10.1088/0029-5515/56/1/016015
    [16]
    Wimmer C, Schiesko L, Fantz U. Investigation of the boundary layer during the transition from volume to surface dominated H production at the BATMAN test facility[J]. Review of Scientific Instruments, 2016, 87: 02B310. doi: 10.1063/1.4932985
    [17]
    Kisaki M, Tsumori K, Ikeda K, et al. Characteristics of plasma grid bias in large-scaled negative ion source[J]. Review of Scientific Instruments, 2014, 85: 02B131. doi: 10.1063/1.4854295
    [18]
    Kojima A, Hanada M, Tanaka Y, et al. Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2011, 51: 083049. doi: 10.1088/0029-5515/51/8/083049
  • Relative Articles

    [1]Huang Chengjin, Lin Jianhui, Zhang Hongping, Qu Xi, Zhou Cangtao, Li Mu. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37(1): 019001. doi: 10.11884/HPLPB202537.240373
    [2]Zhang Jintao, Wang Yingqiao, Xia Yuyang, Li Qing, Li Chunlin, Fan Zhenyuan, Cai Yiming. Design of 5 MW neutral beam high voltage power supply system for HL-3 device[J]. High Power Laser and Particle Beams, 2025, 37(3): 035013. doi: 10.11884/HPLPB202537.240431
    [3]Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, Zhang Ming. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36(2): 025011. doi: 10.11884/HPLPB202436.230159
    [4]Shu Xianlai, Liu Zhimin, Xie Yahong, Wang Na, Liu Wei, Wei Jianglong, Cui Qinglong, Pan Junjun, Chen Shiyong, Hu Chundong. Research on beam feedback control of negative ion source based on RF power regulation[J]. High Power Laser and Particle Beams, 2022, 34(11): 116002. doi: 10.11884/HPLPB202234.220098
    [5]Zhang Jintao, Yang Puqiong, Wei Huiling, Yu Peixuan, Luo Huaiyu, Geng Shaofei, Zhou Bowen, Wan Yinxiang, Cao Jianyong. Research on optimization of MW level neutral beam injection arc power supply system[J]. High Power Laser and Particle Beams, 2021, 33(8): 085002. doi: 10.11884/HPLPB202133.210026
    [6]Zhang Ming, Zhou Lan, Wang Shu, Ma Shaoxiang, Zhang Xueliang, Yu Kexun, Pan Yuan. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31(4): 040012. doi: 10.11884/HPLPB201931.180265
    [7]Zhao Lu, Pan Shengmin, Huang Yiyun, Yang Zhigang. Integrated protection system of EAST-NBI high voltage power supply[J]. High Power Laser and Particle Beams, 2017, 29(06): 065010. doi: 10.11884/HPLPB201729.160452
    [8]Zhao Xiangxue, Liang Lizhen, Hu Chundong, Wei Jianglong, Wang Yan. Beam transmission characteristics simulation of EAST-NBI magnetic deflection system[J]. High Power Laser and Particle Beams, 2015, 27(04): 046002. doi: 10.11884/HPLPB201527.046002
    [9]核工业西南物理研究院, 成都, . Beam current in extraction system of neutral beam ion source on HL-2A[J]. High Power Laser and Particle Beams, 2014, 26(11): 114006. doi: 10.11884/HPLPB201426.114006
    [10]Sheng Peng, Hu Chundong, Song Shihua, Liu Sheng, NBI Team. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26(10): 104003. doi: 10.11884/HPLPB201426.104003
    [11]Tao Ling, Hu Chundong, Xie Yuanlai, Xu Yongjian. Engineering design of ion dump for EAST neutral beam injection system[J]. High Power Laser and Particle Beams, 2013, 25(10): 2687-2692. doi: 10.3788/HPLPB20132510.2687
    [12]Ke Jianlin, Wu Chunlei, Zhou Changgeng. 轴对称静电场的束流光学模拟与设计[J]. High Power Laser and Particle Beams, 2012, 24(06): 1445-1448. doi: 10.3788/HPLPB20122406.1445
    [13]song shihua, sheng peng, liu sheng, wang gensheng, zeng yan, hu chundong. Programmable logic controller system in neutral beam injector’s ion source test stand[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [14]li chaolong, shi haiquan, ai jianfeng, chen aixi, huang kelin, liu zhirong, liu zhengfang, liu zhimin, li jinhai. Nonlinear transport calculation of intense pulsed beam in solenoidal lenses[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [15]wang haitian, li ge, cao liang. Snubber for EAST neutral beam injector[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [16]sheng li-na, song ming-tao. Beam optics of axially symmetric magnetic lens and its applications in ECR ion source[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [17]qi xue-hong, chen lian-yun, zhan fu-ru. Terminal voltage control system for 5.5 MV electrostatic accelerator[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [18]sun zhen-wu, huo yu-ping, li yu-xiao, li tao. Extraction property of RF ion source[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [19]sun zhen-wu, li yu-xiao, jiang sheng-nan, li tao, zheng shi-quan, liu zhu-hua, huo yu-ping. Debugging of 4 MV electrostatic accelerator[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [20]li zheng hong, hu ke song, qian min quan, liu zhen hao, . Study on beam quality of CW photoinjector based DC gun[J]. High Power Laser and Particle Beams, 2003, 15(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 74.0 %META: 74.0 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.4 %其他: 13.4 %其他: 0.5 %其他: 0.5 %China: 0.9 %China: 0.9 %Falls Church: 1.4 %Falls Church: 1.4 %Laplace: 0.1 %Laplace: 0.1 %San Mateo: 0.1 %San Mateo: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Waterloo: 0.2 %Waterloo: 0.2 %丁克尔舍尔本: 0.2 %丁克尔舍尔本: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %休斯顿: 0.2 %休斯顿: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.7 %兰州: 0.7 %北京: 2.7 %北京: 2.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.2 %南京: 0.2 %南平: 0.1 %南平: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %厦门: 0.3 %厦门: 0.3 %台州: 0.2 %台州: 0.2 %合肥: 5.3 %合肥: 5.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %喀什: 0.5 %喀什: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %圣安东尼奥: 0.2 %圣安东尼奥: 0.2 %大连: 0.2 %大连: 0.2 %大阪: 0.2 %大阪: 0.2 %大阪府: 0.1 %大阪府: 0.1 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %安庆: 0.1 %安庆: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %廊坊: 0.7 %廊坊: 0.7 %张家口: 1.2 %张家口: 1.2 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.6 %扬州: 0.6 %抚州: 0.1 %抚州: 0.1 %斯图加特: 0.2 %斯图加特: 0.2 %新德里: 0.2 %新德里: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %杭州: 1.5 %杭州: 1.5 %武汉: 2.9 %武汉: 2.9 %沈阳: 0.2 %沈阳: 0.2 %河池: 0.7 %河池: 0.7 %洛阳: 0.2 %洛阳: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.9 %温州: 0.9 %漯河: 5.3 %漯河: 5.3 %烟台: 0.2 %烟台: 0.2 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福山: 0.3 %福山: 0.3 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 30.8 %芒廷维尤: 30.8 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %苏瀑: 0.1 %苏瀑: 0.1 %苏黎世: 0.1 %苏黎世: 0.1 %萨默维尔: 0.2 %萨默维尔: 0.2 %葵涌: 0.2 %葵涌: 0.2 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.4 %衢州: 0.4 %西宁: 7.1 %西宁: 7.1 %西安: 0.6 %西安: 0.6 %诺沃克: 2.4 %诺沃克: 2.4 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %遵义: 0.2 %遵义: 0.2 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.5 %郑州: 0.5 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 1.1 %长沙: 1.1 %阿姆斯特丹: 0.2 %阿姆斯特丹: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他ChinaFalls ChurchLaplaceSan MateoSeattleWaterloo丁克尔舍尔本上海东莞临汾丹东休斯顿保定兰州北京十堰南京南平南昌南通厦门台州合肥呼和浩特哈尔滨哈尔科夫哥伦布喀什嘉兴圣安东尼奥大连大阪大阪府天津太原安庆宣城常州常德广州廊坊张家口徐州德阳惠州成都扬州抚州斯图加特新德里昆明晋城普赖恩维尔杭州武汉沈阳河池洛阳淄博淮南淮安深圳温州漯河烟台班加罗尔石家庄福山秦皇岛绵阳芒廷维尤芝加哥苏州苏瀑苏黎世萨默维尔葵涌蚌埠衡水衡阳衢州西宁西安诺沃克贵阳费利蒙运城连云港遵义邢台邯郸郑州都伯林重庆金华长沙阿姆斯特丹青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (941) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return