Citation: | Liu Chang. High power and high-efficiency miniaturized power amplifier with compact microstrip resonant cell[J]. High Power Laser and Particle Beams, 2023, 35: 103001. doi: 10.11884/HPLPB202335.230192 |
[1] |
郝国欣, 金燕波, 郭华民, 等. 大功率宽带射频脉冲功率放大器设计[J]. 通信技术, 2006(3):134-136
Hao Guoxin, Jin Yanbo, Guo Huamin, et al. Design of high power broadband RF pulse power amplifiers[J]. Communication Technology, 2006(3): 134-136
|
[2] |
李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:200095 doi: 10.11884/HPLPB202032.200095
Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 200095 doi: 10.11884/HPLPB202032.200095
|
[3] |
Correia L M, Zeller D, Blume O, et al. Challenges and enabling technologies for energy aware mobile radio networks[J]. IEEE Communications Magazine, 2010, 48(11): 66-72. doi: 10.1109/MCOM.2010.5621969
|
[4] |
Wang J C, He S B, You F, et al. Codesign of high-efficiency power amplifier and ring-resonator filter based on a series of continuous modes and even–odd-mode analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(6): 2867-2878. doi: 10.1109/TMTT.2018.2819650
|
[5] |
Tyler V J. A new high efficiency high power amplifier[J]. Marconi Review, 1958, 21(130): 96-109.
|
[6] |
Alizadeh A, Yaghoobi M, Meghdadi M, et al. A 10-W X-band class-F high-power amplifier in a 0.25-μm GaAs pHEMT technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 157-169. doi: 10.1109/TMTT.2020.3033819
|
[7] |
Zhou L H, Zhou X Y, Chan W S, et al. Wideband class-F−1 power amplifier with dual-/quad-mode bandpass response[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(7): 2239-2249. doi: 10.1109/TCSI.2020.2978914
|
[8] |
Sokal N O, Sokal A D. Class E-A new class of high-efficiency tuned single-ended switching power amplifiers[J]. IEEE Journal of Solid-State Circuits, 1975, 10(3): 168-176. doi: 10.1109/JSSC.1975.1050582
|
[9] |
Liu C, Cheng Q F. A novel compensation circuit of high-efficiency concurrent dual-band class-E power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 720-722. doi: 10.1109/LMWC.2018.2842686
|
[10] |
You F, He S B, Tang X H, et al. The effects of limited drain current and on resistance on the performance of an LDMOS inverse class-E power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2): 336-343. doi: 10.1109/TMTT.2008.2011175
|
[11] |
Liu C, Cheng Q F. Analysis and design of high-efficiency parallel-circuit class-E/F power amplifier[J]. IEEE Transaction on Microwave Theory and Techniques, 2019, 67(6): 2382-2392. doi: 10.1109/TMTT.2019.2902548
|
[12] |
Lim J S, Kim H S, Park J S, et al. A power amplifier with efficiency improved using defected ground structure[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(4): 170-172. doi: 10.1109/7260.916333
|
[13] |
Ji S H, Cho C S, Lee J W, et al. Concurrent dual-band class-E power amplifier using composite right/left-handed transmission lines[J]. IEEE Transaction on Microwave Theory and Techniques, 2007, 55(6): 1341-1347. doi: 10.1109/TMTT.2007.895236
|
[14] |
Feng T, Ma K X, Wang Y Q, et al. Bandpass-filtering power amplifier with compact size and wideband harmonic suppression[J]. IEEE Transaction on Microwave Theory and Techniques, 2022, 70(2): 1254-1268. doi: 10.1109/TMTT.2021.3124254
|
[15] |
Chen S C, Xue Q. A class-F power amplifier with CMRC[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(1): 31-33. doi: 10.1109/LMWC.2010.2091265
|
[16] |
Hayati M, Sheikhi A, Grebennikov A. Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 133-135. doi: 10.1109/LMWC.2014.2382649
|
[17] |
Negra R, Ghannouchi F M, Bächtold W. Study and design optimization of multiharmonic transmission-line load networks for class-E and class-F K-band MMIC power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1390-1397. doi: 10.1109/TMTT.2007.896769
|
[18] |
Grebennikov A. High-efficiency class E/F lumped and transmission-line power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(6): 1579-1588. doi: 10.1109/TMTT.2011.2114672
|
[1] | Li Chao, Shi Rui, Zeng Shuxin, Xu Xinhua, Wei Yuhong, Tuo Xianguo. Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method[J]. High Power Laser and Particle Beams, 2025, 37(5): 059001. doi: 10.11884/HPLPB202537.240398 |
[2] | Lü Donghui, Cheng Jie, Li Rui, Zhang Nan, Zhang Ligang. A nano-second pulse waveform reconstruction method based on neural network[J]. High Power Laser and Particle Beams, 2025, 37(1): 013002. doi: 10.11884/HPLPB202537.240342 |
[3] | Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406 |
[4] | Zhou Hongbing, Zhang Haoyu, Li Min, Feng Xi, Xie Lianghua, Liu Yu, Chu Qiuhui, Yan Yuefang, Tao Rumao, Lin Honghuan, Wang Jianjun, Yan Lixin, Jing Feng. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36(6): 061001. doi: 10.11884/HPLPB202436.230426 |
[5] | Liu Luyao, Jin Xiao, Cai Jinliang. Prediction of system-level electric field radiated emission based on ANN reverse model[J]. High Power Laser and Particle Beams, 2024, 36(9): 099002. doi: 10.11884/HPLPB202436.240177 |
[6] | Chen Changjun, Tang Dan, Yang Hao, You Anqing, Pan Xudong. Research of aircraft pose estimation based on neural network feature line extraction[J]. High Power Laser and Particle Beams, 2024, 36(6): 069001. doi: 10.11884/HPLPB202436.240032 |
[7] | Zhu Wenchao, Wei Zhengyu, Xie Chunjie, Zhou Zeran, Wang Lin, Liang Yu. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36(3): 034004. doi: 10.11884/HPLPB202436.230361 |
[8] | Chen Jianfei, Zhou Hongtao, Fang Meihua, Wu Kang, Song Dingyi. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(10): 104002. doi: 10.11884/HPLPB202335.230149 |
[9] | He Zhibin, Yan Liping, Zhao Xiang. Prediction of coupling cross section of hexagonal aperture array based on BP neural network[J]. High Power Laser and Particle Beams, 2022, 34(5): 053001. doi: 10.11884/HPLPB202234.210566 |
[10] | Li Dong, Sheng Liang, Li Yang, Duan Baojun. Research on algorithm for restoration of large aperture and thick pinhole imaging based on neural network[J]. High Power Laser and Particle Beams, 2022, 34(6): 064002. doi: 10.11884/HPLPB202234.210345 |
[11] | Jing Yanlong, Li Jie, Shi Wentian, Yan Xiaoling. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 2021, 33(10): 109001. doi: 10.11884/HPLPB202133.210223 |
[12] | Li Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bocheng, Wang Kun, Li Changliang, Zhao Zhentang. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33(3): 034007. doi: 10.11884/HPLPB202133.200318 |
[13] | Wan Jinyu, Sun Zheng, Zhang Xiang, Bai Yu, Tsai Chengying, Chu Paul, Huang Senlin, Jiao Yi, Leng Yongbin, Li Biaobin, Li Jingyi, Li Nan, Lu Xiaohan, Meng Cai, Peng Yuemei, Wang Sheng, Zhang Chengyi. Machine learning applications in large particle accelerator facilities: review and prospects[J]. High Power Laser and Particle Beams, 2021, 33(9): 094001. doi: 10.11884/HPLPB202133.210199 |
[14] | Xiao Dengjie, Qiao Yusi, Chu Zhongming. Orbit correction based on machine learning[J]. High Power Laser and Particle Beams, 2021, 33(5): 054004. doi: 10.11884/HPLPB202133.200352 |
[15] | Liu Chunhua, Hou Zhipei, Wang Yuqin, Feng Zhen, Xia Fan, Huang Yuan. Artificial neural network approach applied to data processing of Thomson scattering on HL-2A[J]. High Power Laser and Particle Beams, 2019, 31(2): 022003. doi: 10.11884/HPLPB201931.180206 |
[16] | Liu Zhengyang, Yan Liping, Zhao Xiang. Evaluation of electromagnetic shielding effectiveness for loaded metallic enclosures with apertures based on machine learning[J]. High Power Laser and Particle Beams, 2019, 31(8): 083201. doi: 10.11884/HPLPB201931.190079 |
[17] | Jing Yuefeng, Liu Jun, Guan Yonghong. Inpainting method for flash radiographic anti-scatter grid image based on neural networks[J]. High Power Laser and Particle Beams, 2013, 25(03): 751-754. doi: 10.3788/HPLPB20132503.0751 |
[18] | Jing Yuefeng, Liu Jun, Guan Yonghong. Restoration method for flash radiographic images based on BP neural network[J]. High Power Laser and Particle Beams, 2012, 24(09): 2215-2219. doi: 10.3788/HPLPB20122409.2215 |
[19] | feng peng, liu siyuan, jin jing. 252Cf-source driven identification method for mass of fissile material based on autocorrelation function and stationary wavelet transform[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[20] | fan bin, wan yong-jian, yang li, zeng zhi-ge, wu fan, wu shi-bin. Experimental investigation on intelligent control of active lap based on CMAC neural network[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |