Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001. doi: 10.11884/HPLPB202335.230198
Citation: Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001. doi: 10.11884/HPLPB202335.230198

S band radial beam coaxial grating backward wave oscillator

doi: 10.11884/HPLPB202335.230198
Funds:  National Key R&D Program (G072022YFF0707602); Guangdong Key R&D Program (2021B0101300003)
More Information
  • Corresponding author: Wang Zhanliang, 46969449@qq.com
  • Received Date: 2023-06-28
  • Accepted Date: 2023-10-23
  • Rev Recd Date: 2023-10-20
  • Available Online: 2023-11-02
  • Publish Date: 2023-11-11
  • High power microwave devices are investigated extensively, because of their potential applications, such as advanced radars, electromagnetic warfare systems. However, low efficiency, enormous volume, huge weight and short lifetime limit their applications. In this paper, a coaxial grating slow wave structure backward wave oscillator (BWO) driven by radial beam is proposed. The focusing system is eliminated in the particle in cell simulation, which can reduce the volume and the power loss in practice. The lifetime of the BWO can also be improved with the thermionic radial beam cathode instead of the explosive emission cathode. After optimization, the BWO driven by 460 kV, 6 kA radial beam can produce 1.2 GW at frequency 3.8 GHz, with the efficiency of 43.5%.

  • [1]
    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007.
    [2]
    Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans Terahertz Sci Technol, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [3]
    Wang Zhanliang, Gong Yubin, Wei Yanyu, et al. High-power millimeter-wave BWO driven by sheet electron beam[J]. IEEE Trans Electron Devices, 2013, 60(1): 471-477. doi: 10.1109/TED.2012.2226587
    [4]
    Zhang Yabin, Gong Yubin, Wang Zhanliang, et al. Study of high-power Ka-band rectangular double-grating sheet beam BWO[J]. IEEE Trans Plasma Sci, 2014, 42(6): 1502-1508. doi: 10.1109/TPS.2014.2301719
    [5]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2019, 66(1): 722-728. doi: 10.1109/TED.2018.2879193
    [6]
    Xiao Renzhen, Chen Changhua, Sun Jun, et al. A High-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor[J]. Appl Phys Lett, 2011, 98: 101502. doi: 10.1063/1.3562612
    [7]
    Wang Zhanliang, Xu Xiong, Gong Yubin, et al. Simulation on W-band sheet beam rectangular waveguide grating backward-wave oscillator[J]. High Power Laser and Particle Beams, 2015, 27: 083005. doi: 10.11884/HPLPB201527.083005
    [8]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research activities on high-power microwave sources in national university of defense technology of China[C]//IEEE Pulsed Power Conference. 2015: 1-20.
    [9]
    Klimov A I, Kurkan I K, Polevin S D, et al. A multigigawatt X-Band relativistic backward wave oscillator with a modulating resonant reflector[J]. Tech Phys Lett, 2008, 34(3): 235-237. doi: 10.1134/S1063785008030176
    [10]
    Hahn K, Schamiloglu E. Long-pulse relativistic backward wave oscillator operation utilizing a disk cathode[C]//28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001: 1618-1621.
    [11]
    Hegeler F, Schamiloglu E, Korovin S D, et al. Recent advances in the study of a long pulse relativistic backward wave oscillator[C]//Proceedings of the 12th IEEE International Pulsed Power Conference. 1999: 825-828.
    [12]
    Agee F J. Evolution of pulse shortening research in narrow band, high power microwave sources[J]. IEEE Trans Plasma Sci, 1998, 26(3): 235-245. doi: 10.1109/27.700749
    [13]
    Gunin A V, Landl V F, Korovin S D, et al. Experimental studies of long-lifetime cold cathodes for high-power microwave oscillators[J]. IEEE Trans Plasma Sci, 2000, 28(3): 537-541. doi: 10.1109/27.887668
    [14]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2013, 20: 113101. doi: 10.1063/1.4825357
    [15]
    Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001. doi: doi:10.11884/HPLPB201931.190010
    [16]
    Konoplev I V, McGrane P, He W, et al. Experimental study of coaxial free-electron maser based on two-dimensional distributed feedback[J]. Phys Rev Lett, 2006, 96: 035002. doi: 10.1103/PhysRevLett.96.035002
    [17]
    Gan Yanqing, Huang Hua, Lei Lurong, et al. Experimental investigation on an S-band relativistic klystron oscillator[J]. High Power Laser and Particle Beams, 2008, 20(5): 815-818.
    [18]
    Parson J M, Mankowski J J, Dickens J C, et al. Imaging of explosive emission cathode and anode plasma in a vacuum-sealed vircator high-power microwave source at 250 A/cm2[J]. IEEE Trans Plasma Sci, 2014, 42(10): 2592-2593. doi: 10.1109/TPS.2014.2331688
    [19]
    Ma Qiaosheng. A novel efficient vircator[J]. High Power Laser Part Beams, 2015, 27: 053005. doi: 10.3788/HPLPB20152705.53005
    [20]
    Qin Fen, Wang Dong, Chen Daibing, et al. Rigorous analysis of high-frequency characteristics of higher-order depressed MILO slow wave structure[J]. High Power Laser and Particle Beams, 2013, 25(s): 119-123. doi: 10.3788/HPLPB2013250s.0119
    [21]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A small-signal theory for the radial-line relativistic klystron amplifier[J]. J Appl Phys, 2017, 121: 083302. doi: 10.1063/1.4977065
    [22]
    Dang Fangchao, Zhang Xiaoping, Zhang Jun, et al. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation[J]. J Appl Phys, 2017, 121: 123305. doi: 10.1063/1.4979309
    [23]
    Konoplev I V, Fisher L, Cross A W, et al. Surface wave Cherenkov maser based on a periodic lattice[J]. Appl Phys Lett, 2010, 96: 261101. doi: 10.1063/1.3456618
    [24]
    Hofmann I. Stability of anisotropic beams with space charge[J]. Phys Rev E, 1998, 57(4): 4713-4724. doi: 10.1103/PhysRevE.57.4713
    [25]
    Humphries S, Russell S, Carlsten B, et al. Focusing of high-perveance planar electron beams in a miniature wiggler magnet array[J]. IEEE Trans Plasma Sci, 2005, 33(2): 882-891. doi: 10.1109/TPS.2005.845088
  • Relative Articles

    [1]Wu Hao, Li Shaofu, Wang Wei, Jiang Cheng, Tang Yingying. Simulation and verification of 3D temperature model for high power microwave heating[J]. High Power Laser and Particle Beams, 2024, 36(1): 013014. doi: 10.11884/HPLPB202436.230281
    [2]Xiao Jiahao, Du Yingchao, Li Haoqing, Zhao Yongtao, Sheng Liang. Dual degrees of freedom diagnosis with high energy electron lens radiography[J]. High Power Laser and Particle Beams, 2022, 34(6): 064010. doi: 10.11884/HPLPB202234.210548
    [3]Akinyimika Adewale, Wang Yulei, Bai Zhenxu, Li Yunfei, Lu Zhiwei. Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy[J]. High Power Laser and Particle Beams, 2021, 33(11): 111007. doi: 10.11884/HPLPB202133.210313
    [4]Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, Pei Guoxi, Liu Shengguang. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33(9): 094003. doi: 10.11884/HPLPB202133.210244
    [5]Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32(2): 025002. doi: 10.11884/HPLPB202032.200040
    [6]Song Falun, Li Fei, Zhang Beizhen, Gong Haitao, Gan Yanqing, Jin Xiao. Analysis of a planar S-type folded pulse forming line for compact high-power pulsed source[J]. High Power Laser and Particle Beams, 2019, 31(1): 015003. doi: 10.11884/HPLPB201931.180273
    [7]Kozlov A, Parfenov Yu, Chepelev V, Shurupov A, Shurupov M, Chen Yuhao, Xie Yanzhao. Assessing immunity of power systems to effects of high-voltage pulses with power on[J]. High Power Laser and Particle Beams, 2019, 31(7): 070006. doi: 10.11884/HPLPB201931.180356
    [8]Wang Yuwei, Chen Dongqun, Zhang Zicheng, Cao Shengguang, Li Da. A compact wideband high power microwave source based on oil-filled switched oscillator[J]. High Power Laser and Particle Beams, 2019, 31(1): 013002. doi: 10.11884/HPLPB201931.180214
    [9]Jin Wenxuan, Chai Changchun, Liu Yuqian, Wu Han, Yang Yintang. Microwave damage susceptibilitytrend of the silicon NPN monolithic composite transistor as a function of structure parameters[J]. High Power Laser and Particle Beams, 2019, 31(10): 103220. doi: 10.11884/HPLPB201931.190218
    [10]Yang Hanwu, Xun Tao, Gao Jingming, Zhang Zicheng. X-ray shielding estimations for rep-rate high power microwave accelerators[J]. High Power Laser and Particle Beams, 2018, 30(7): 073005. doi: 10.11884/HPLPB201830.170532
    [11]Wang Qiankun, Chai Changchun, Xi Xiaowen, Yang Yintang. Damage effect and mechanism of Darlington tubes caused by intense electromagnetic interference[J]. High Power Laser and Particle Beams, 2018, 30(8): 083008. doi: 10.11884/HPLPB201830.170472
    [12]Liao Yong, Meng Fanbao, Xu Gang, Xie Ping, Ma Hongge. Analysis of wide-angle scanning of HPM waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2018, 30(3): 033002. doi: 10.11884/HPLPB201830.170364
    [13]Yi Chaolong, Fan Yajun, Shi Lei, Zhu Yufeng, Xia Wenfeng, Shi Yiping, Lu Yanlei, Qiao Hanqing, Zhang Xingjia. Design and experiment of high-power ultra-wideband feed[J]. High Power Laser and Particle Beams, 2016, 28(03): 033001. doi: 10.11884/HPLPB201628.033001
    [14]Jin Yan, Chu Zheng, Zhang Jin. Improved weighted support vector regression algorithm for vulnerability assessment of electronic devices illuminated or injected by high power microwave[J]. High Power Laser and Particle Beams, 2014, 26(12): 123201. doi: 10.11884/HPLPB201426.123201
    [15]Jin Yan, Hu Yun’an, Huang Jun, Zhang Jin. Application of support vector regression to vulnerability assessment of electronic devices illuminated or injected by high power microwave[J]. High Power Laser and Particle Beams, 2012, 24(09): 2145-2150. doi: 10.3788/HPLPB20122409.2145
    [16]zhang zhiqiang, qiu shi, fang jinyong, zhang qingyuan, hou qing, chang chao, jiao yongchang. Experiment device for X-band HPM feed output window dielectric breakdown[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [17]zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [18]li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]zhou jin shan, liu guo zhi, wang jian guo. Experimental studies on coupling characteristics of rectangular slot[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [20]li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 70.8 %META: 70.8 %PDF: 9.3 %PDF: 9.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 1.3 %其他: 1.3 %San Mateo: 0.2 %San Mateo: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.9 %上海: 0.9 %东京: 0.6 %东京: 0.6 %临汾: 0.2 %临汾: 0.2 %丹东: 0.2 %丹东: 0.2 %伊斯兰堡: 0.7 %伊斯兰堡: 0.7 %伊斯坦布尔: 0.7 %伊斯坦布尔: 0.7 %保定: 0.6 %保定: 0.6 %北京: 2.0 %北京: 2.0 %南京: 0.2 %南京: 0.2 %厦门: 0.4 %厦门: 0.4 %台州: 0.9 %台州: 0.9 %哈尔滨: 0.7 %哈尔滨: 0.7 %哈尔科夫: 0.9 %哈尔科夫: 0.9 %哥伦布: 0.7 %哥伦布: 0.7 %商洛: 0.2 %商洛: 0.2 %天津: 0.2 %天津: 0.2 %娄底: 0.2 %娄底: 0.2 %常德: 0.6 %常德: 0.6 %广州: 0.4 %广州: 0.4 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.7 %张家口: 0.7 %德黑兰: 1.7 %德黑兰: 1.7 %惠州: 0.6 %惠州: 0.6 %成都: 2.6 %成都: 2.6 %昆明: 0.6 %昆明: 0.6 %晋城: 0.2 %晋城: 0.2 %普赖恩维尔: 1.1 %普赖恩维尔: 1.1 %杭州: 2.2 %杭州: 2.2 %枣庄: 0.2 %枣庄: 0.2 %柳州: 0.4 %柳州: 0.4 %武汉: 0.6 %武汉: 0.6 %沃思堡: 0.6 %沃思堡: 0.6 %沈阳: 0.2 %沈阳: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 0.2 %漯河: 0.2 %烟台: 0.2 %烟台: 0.2 %班加罗尔: 0.2 %班加罗尔: 0.2 %石家庄: 1.1 %石家庄: 1.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 1.5 %绵阳: 1.5 %芒廷维尤: 36.7 %芒廷维尤: 36.7 %芝加哥: 2.4 %芝加哥: 2.4 %西宁: 8.6 %西宁: 8.6 %西安: 0.9 %西安: 0.9 %西雅图: 0.6 %西雅图: 0.6 %诺沃克: 5.2 %诺沃克: 5.2 %贵阳: 0.9 %贵阳: 0.9 %运城: 2.2 %运城: 2.2 %遵义: 0.6 %遵义: 0.6 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %金奈: 0.2 %金奈: 0.2 %长沙: 0.4 %长沙: 0.4 %首尔: 0.4 %首尔: 0.4 %其他其他San Mateo[]上海东京临汾丹东伊斯兰堡伊斯坦布尔保定北京南京厦门台州哈尔滨哈尔科夫哥伦布商洛天津娄底常德广州廊坊张家口德黑兰惠州成都昆明晋城普赖恩维尔杭州枣庄柳州武汉沃思堡沈阳湖州漯河烟台班加罗尔石家庄秦皇岛绵阳芒廷维尤芝加哥西宁西安西雅图诺沃克贵阳运城遵义重庆金华金奈长沙首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (379) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return