Liu Huilan, Tang Yichuang, Zhi Yinzhou, et al. Parameters analysis of triangular wave modulation in resonator micro optic gyro[J]. High Power Laser and Particle Beams, 2015, 27: 024148. doi: 10.11884/HPLPB201527.024148
Citation: Yao Daibo, Yang Xuan, Guo Qinggong. Design of C/X dual band and dual circularly polarized shared-aperture microstrip antenna[J]. High Power Laser and Particle Beams, 2023, 35: 103002. doi: 10.11884/HPLPB202335.230224

Design of C/X dual band and dual circularly polarized shared-aperture microstrip antenna

doi: 10.11884/HPLPB202335.230224
  • Received Date: 2023-07-19
  • Accepted Date: 2023-09-08
  • Rev Recd Date: 2023-09-08
  • Available Online: 2023-09-14
  • Publish Date: 2023-10-08
  • A dual band dual circularly polarized shared-aperture microstrip antenna is designed and fabricated, which can operate in the dual circular polarization mode in the C/X band, and the aperture utilization rate of the antenna is effectively improved. The parasitic structure and the L-shaped probe are applied to improve the impedance bandwidth. The shared aperture design is realized by placing the X-band antenna in the gap of the C-band antenna. The good cross-polarization ratio is realized by the symmetrical inversed phase feeding technique. The measurement results show that the impedance bandwidth and 3 dB axial ratio bandwidth of C-band are greater than 23% and 17%, respectively. The impedance bandwidth and 3 dB axial ratio bandwidth of X-band are greater than 28% and 18% respectively. The cross-polarization ratio at the test frequency points is greater than 25 dB.
  • [1]
    Zheng Yuyang, Liu C C, Ding Yanran. A shared-aperture broadband circularly polarized antenna for satellite communications and navigation[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. 2019: 1755-1756.
    [2]
    Al-Saedi H, Abdel-Wahab W M, Raeis-Zadeh S M, et al. Active phased-array antennas for Ka/K mobile satellite communications[C]//2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). 2018: 1-3.
    [3]
    Li Jiawang, Hu Yun, Xiang Lei, et al. Broadband circularly polarized magnetoelectric dipole antenna and array for K-band and Ka-band satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5907-5912. doi: 10.1109/TAP.2022.3140507
    [4]
    Hu Wei, Li Changjiang, Liu Xuekang, et al. Wideband circularly polarized microstrip patch antenna with multimode resonance[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 533-537. doi: 10.1109/LAWP.2021.3056404
    [5]
    Yang Yuhang, Sun Baohua, Guo Jingli. A single-layer wideband circularly polarized antenna for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4925-4929. doi: 10.1109/TAP.2019.2951518
    [6]
    Bai Guo, Liu Yuanzhi, Liao Cheng. A compact wideband dual circularly polarized microstrip patch antenna array for X-band satellite communication systems[C]//2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2021: 1-3.
    [7]
    Zhao Zhipeng, Liu Feng, Ren Jian, et al. Dual-sense circularly polarized antenna with a dual-coupled line[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(8): 1415-1419. doi: 10.1109/LAWP.2020.3003943
    [8]
    Zhang Jindong, Wu Wen, Fang Dagang. Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 109-116. doi: 10.1109/TAP.2015.2501847
    [9]
    Mao Chunxu, Gao S, Wang Yi, et al. Dual-band circularly polarized shared-aperture array for C-/X-band satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5171-5178. doi: 10.1109/TAP.2017.2740981
    [10]
    Kumar P, Dwari S, Saini R K, et al. Dual-band dual-sense polarization reconfigurable circularly polarized antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 64-68. doi: 10.1109/LAWP.2018.2880799
    [11]
    Zhao Zhipeng, Ren Jian, Liu Ying, et al. Wideband dual-feed, dual-sense circularly polarized dielectric resonator antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7785-7793. doi: 10.1109/TAP.2020.2999754
    [12]
    Wang Wenwei, Chen Chunhong, Wang Shiyan, et al. Switchable dual-band dual-sense circularly polarized patch antenna implemented by dual-band phase shifter of ±90°[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 6912-6917. doi: 10.1109/TAP.2021.3070055
    [13]
    Ji Shuosheng, Dong Yuandan, Wen Sichao, et al. C/X dual-band circularly polarized shared-aperture antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2334-2338. doi: 10.1109/LAWP.2021.3110529
    [14]
    Li Ke, Dong Tao, Xia Zhenghuan. A broadband shared-aperture L/S/X-band dual-polarized antenna for SAR applications[J]. IEEE Access, 2019, 7: 51417-51425. doi: 10.1109/ACCESS.2019.2911965
    [15]
    Zhang Zhaoming, Zhang Tianling, Guo Chao, et al. S-band dual circularly polarized microstrip patch antenna array for satellite communication[C]//2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). 2017: 1-3.
  • Relative Articles

    [1]Han Caozheng, Wang Wubin, Zhao Wei, Chen Ruitao, Ma Xingwang, Li Yanling, Bai Jiaqi. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36(12): 123001. doi: 10.11884/HPLPB202436.240219
    [2]Zhang Jingqi, Qin Feng, Gao Yuan, Zhong Shouhong, Wang Zhen. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004. doi: 10.11884/HPLPB202335.220257
    [3]Fan Yuqing, Cheng Erwei, Wei Ming, Zhang Qinglong, Chen Yazhou. Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft[J]. High Power Laser and Particle Beams, 2019, 31(12): 123201. doi: 10.11884/HPLPB201931.190268
    [4]Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator[J]. High Power Laser and Particle Beams, 2019, 31(6): 063205. doi: 10.11884/HPLPB201931.190057
    [5]Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203. doi: 10.11884/HPLPB201931.190035
    [6]Wang Xiangyu, Fan Yajun, Qiao Hanqing, Lu Yanlei, Zhu Yufeng, Xia Wenfeng, Zhang Xingjia. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31(11): 115001. doi: 10.11884/HPLPB201931.190125
    [7]Wang Yajie, He Pengjun, Jing Xiaopeng, Tie Weihao, Xie Jiangyuan, Zhao Chengguang. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30(9): 095005. doi: 10.11884/HPLPB201830.170398
    [8]Wu Huancheng, Hu Jinguang, Zhong Longquan, Lin Jiangchuan. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29(09): 093203. doi: 10.11884/HPLPB201729.170088
    [9]Zhang Xijun, Zhang Liting, Wang Shuping, Zhao Min. Effect of length of transmission line on performance test of electrostatic discharge protection device[J]. High Power Laser and Particle Beams, 2017, 29(10): 103205. doi: 10.11884/HPLPB201729.170156
    [10]Li Yong, Xie Haiyan, Yang Zhiqiang, Xia Hongfu, Xuan Chun, Wang Jianguo. Parameter extraction of transient voltage suppressor diode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033202. doi: 10.11884/HPLPB201628.033202
    [11]Yang Cheng, Liu Peiguo, Liu Jibin, Zhou Dongming, Li Gaosheng. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(04): 1045-1049.
    [12]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]xiong ling-ling, lü bai-da. Theoretical models describing far-field intensity distributions of laser diode[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [14]qi shu-feng, liu shang-he, liu hong-bing, yang jie. Latent failure of 2SC3356 caused by electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [15]he qi-yuan, liu shang-he, xu xiao-ying, wang shao-guang, chen jing-ping. Influence of approaching speed on air electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [16]yang jie, wang chang-he, liu shang-he. Electromagnetic pulse sensitive ports of micro-wave low-noise transistors[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [17]quan lin, zhang yong-min, tu jing, chen zhi-hua, lai ding-guo, fan ya-jun, shao hao. Stability of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [18]bi zeng-jun, sheng song-lin, sun chi, liu shang-he. A numerical model of electromagnetic fields generated by electrostatic discharge spark[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [19]hou min-sheng, wang shu-ping. Simulator of electromagnetism pulse produced during electrostatic discharge[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 王淼,李嘉豪,汤浩,郭亚. ESD保护电路在HDMI板级信号完整性中的影响分析及其布局优化研究. 现代电子技术. 2024(08): 68-74 .
    2. 付路,阎照文,刘玉竹,苏丽轩. 基于分段线性模型针对传输线脉冲瞬态干扰信号的芯片协同防护设计方法. 电子与信息学报. 2023(09): 3263-3271 .
    3. 付路,阎照文,刘玉竹,苏丽轩. 芯片传导瞬态电磁干扰下的防护特性研究. 安全与电磁兼容. 2022(04): 38-42+66 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 76.2 %META: 76.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 0.1 %China: 0.1 %Hamtramck: 0.2 %Hamtramck: 0.2 %India: 0.1 %India: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.3 %上海: 0.3 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %北京: 22.2 %北京: 22.2 %台州: 0.4 %台州: 0.4 %咸阳: 0.1 %咸阳: 0.1 %安康: 0.2 %安康: 0.2 %巴拿马城: 0.1 %巴拿马城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 0.6 %成都: 0.6 %新乡: 0.3 %新乡: 0.3 %昆明: 0.9 %昆明: 0.9 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.5 %江门: 0.5 %深圳: 11.0 %深圳: 11.0 %湖州: 0.4 %湖州: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.6 %衢州: 0.6 %西宁: 40.1 %西宁: 40.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.0 %郑州: 1.0 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %雅安: 0.1 %雅安: 0.1 %首尔: 0.2 %首尔: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaHamtramckIndiaUnited KingdomUnited States[]上海中山临汾丹东丽水伊犁北京台州咸阳安康巴拿马城布鲁塞尔常州常德广州弗吉张家口成都新乡昆明普洱杭州桂林桃园武汉江门深圳湖州福州秦皇岛红河约翰内斯堡绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城连云港郑州都伯林重庆长沙长治雅安首尔马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (739) PDF downloads(92) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return