Citation: | Shen Shiyu, Yang Xiaohu, Zhang Guobo, et al. Precise control of high-energy protons transport in space environment by using bayesian optimization[J]. High Power Laser and Particle Beams, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231 |
[1] |
Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the Earth's atmosphere: modeling results[J]. Geophysical Research Letters, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
|
[2] |
Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998.
|
[3] |
Mironychev P V, Babich L P. Propagation of an electron beam in atmosphere at altitudes from 15 to 100 km: numerical experiment[J]. High Temperature, 2000, 38(6): 834-842. doi: 10.1023/A:1004172802986
|
[4] |
Porazik P, Johnson J R, Kaganovich I, et al. Modification of the loss cone for energetic particles[J]. Geophysical Research Letters, 2014, 41(22): 8107-8113. doi: 10.1002/2014GL061869
|
[5] |
Willard J M, Johnson J R, Snelling J M, et al. Effect of field-line curvature on the ionospheric accessibility of relativistic electron beam experiments[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 56. doi: 10.3389/fspas.2019.00056
|
[6] |
Powis A T, Porazik P, Greklek-Mckeon M, et al. Evolution of a relativistic electron beam for tracing magnetospheric field lines[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 69. doi: 10.3389/fspas.2019.00069
|
[7] |
郝建红, 王希, 张芳, 等. 随移动窗推进的带电粒子束团长程传输模拟分析[J]. 国防科技大学学报, 2021, 43(5):168-174 doi: 10.11887/j.cn.202105020
Hao Jianhong, Wang Xi, Zhang Fang, et al. Simulation analysis of long-range propagation of charged particle beams propelled by moving window[J]. Journal of National University of Defense Technology, 2021, 43(5): 168-174 doi: 10.11887/j.cn.202105020
|
[8] |
Hao Jianhong, Wang Xi, Zhang Fang, et al. The influence of magnetic field on the beam quality of relativistic electron beam long-range propagation in near-Earth environment[J]. Plasma Science and Technology, 2021, 23: 115301. doi: 10.1088/2058-6272/ac183a
|
[9] |
Yao Haibo, Yang Xiaohu, Zhang G B, et al. Stable transport of relativistic electron beams in plasmas[J]. Journal of Plasma Physics, 2022, 88: 905880105. doi: 10.1017/S002237782100132X
|
[10] |
钟海坚, 陈宗华, 赵炳炎. 基于MATLAB的地磁场中带电粒子运动模拟分析[J]. 大学物理实验, 2021, 34(1):83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022
Zhong Haijian, Chen Zonghua, Zhao Bingyan. The motion simulation of charged particles in geomagnetic field based on MATLAB[J]. Physical Experiment of College, 2021, 34(1): 83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022
|
[11] |
Maus S. IGRF[EB/OL]. [2023-07-15]. https://ccmc.gsfc.nasa.gov/models/IGRF~13/.
|
[12] |
李承祖, 银燕, 赵晶, 等. 电动力学[M]. 长沙: 国防科技大学出版社, 2022: 305-307
Li Chengzu, Yin Yan, Zhao Jing, et al. Electrodynamics[M]. Changsha: National University of Defense Technology Press, 2022: 305-307
|
[13] |
Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. doi: 10.1142/S0129065704001899
|
[14] |
Snoek J, Larochelle H, Adams R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 2951-2959.
|
[15] |
Srinivas N, Krause A, Kakade S, et al. Gaussian process optimization in the bandit setting: no regret and experimental design[C]//Proceedings of the 27th International Conference on Machine Learning (ICML). 2010: 1015-1022.
|
[16] |
Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[DB/OL]. arXiv preprint arXiv: 1012.2599, 2010.
|