Volume 35 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Shen Shiyu, Yang Xiaohu, Zhang Guobo, et al. Precise control of high-energy protons transport in space environment by using bayesian optimization[J]. High Power Laser and Particle Beams, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231
Citation: Shen Shiyu, Yang Xiaohu, Zhang Guobo, et al. Precise control of high-energy protons transport in space environment by using bayesian optimization[J]. High Power Laser and Particle Beams, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231

Precise control of high-energy protons transport in space environment by using bayesian optimization

doi: 10.11884/HPLPB202335.230231
  • Received Date: 2023-07-26
  • Accepted Date: 2023-09-23
  • Rev Recd Date: 2023-09-19
  • Available Online: 2023-09-26
  • Publish Date: 2023-10-08
  • Considering the geomagnetic field, the relativistic effect and bremsstrahlung radiation of high-energy protons, a single particle motion model of proton transport in the space environment is established. Based on this model, the Bayesian optimization method is proposed to realize the precise control of protons transport from the initial position to the target under a given proton energy. The dependence of the proton launch angle on the launch height is obtained, that is, when the coordinate radial angle is 0° and 180°, the value of the coordinate axial angle will not change the optimal emission direction of the particles. The results can provide theoretical references for long-distance transport of proton beams in the space environment.
  • loading
  • [1]
    Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the Earth's atmosphere: modeling results[J]. Geophysical Research Letters, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [2]
    Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998.
    [3]
    Mironychev P V, Babich L P. Propagation of an electron beam in atmosphere at altitudes from 15 to 100 km: numerical experiment[J]. High Temperature, 2000, 38(6): 834-842. doi: 10.1023/A:1004172802986
    [4]
    Porazik P, Johnson J R, Kaganovich I, et al. Modification of the loss cone for energetic particles[J]. Geophysical Research Letters, 2014, 41(22): 8107-8113. doi: 10.1002/2014GL061869
    [5]
    Willard J M, Johnson J R, Snelling J M, et al. Effect of field-line curvature on the ionospheric accessibility of relativistic electron beam experiments[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 56. doi: 10.3389/fspas.2019.00056
    [6]
    Powis A T, Porazik P, Greklek-Mckeon M, et al. Evolution of a relativistic electron beam for tracing magnetospheric field lines[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 69. doi: 10.3389/fspas.2019.00069
    [7]
    郝建红, 王希, 张芳, 等. 随移动窗推进的带电粒子束团长程传输模拟分析[J]. 国防科技大学学报, 2021, 43(5):168-174 doi: 10.11887/j.cn.202105020

    Hao Jianhong, Wang Xi, Zhang Fang, et al. Simulation analysis of long-range propagation of charged particle beams propelled by moving window[J]. Journal of National University of Defense Technology, 2021, 43(5): 168-174 doi: 10.11887/j.cn.202105020
    [8]
    Hao Jianhong, Wang Xi, Zhang Fang, et al. The influence of magnetic field on the beam quality of relativistic electron beam long-range propagation in near-Earth environment[J]. Plasma Science and Technology, 2021, 23: 115301. doi: 10.1088/2058-6272/ac183a
    [9]
    Yao Haibo, Yang Xiaohu, Zhang G B, et al. Stable transport of relativistic electron beams in plasmas[J]. Journal of Plasma Physics, 2022, 88: 905880105. doi: 10.1017/S002237782100132X
    [10]
    钟海坚, 陈宗华, 赵炳炎. 基于MATLAB的地磁场中带电粒子运动模拟分析[J]. 大学物理实验, 2021, 34(1):83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022

    Zhong Haijian, Chen Zonghua, Zhao Bingyan. The motion simulation of charged particles in geomagnetic field based on MATLAB[J]. Physical Experiment of College, 2021, 34(1): 83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022
    [11]
    Maus S. IGRF[EB/OL]. [2023-07-15]. https://ccmc.gsfc.nasa.gov/models/IGRF~13/.
    [12]
    李承祖, 银燕, 赵晶, 等. 电动力学[M]. 长沙: 国防科技大学出版社, 2022: 305-307

    Li Chengzu, Yin Yan, Zhao Jing, et al. Electrodynamics[M]. Changsha: National University of Defense Technology Press, 2022: 305-307
    [13]
    Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. doi: 10.1142/S0129065704001899
    [14]
    Snoek J, Larochelle H, Adams R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 2951-2959.
    [15]
    Srinivas N, Krause A, Kakade S, et al. Gaussian process optimization in the bandit setting: no regret and experimental design[C]//Proceedings of the 27th International Conference on Machine Learning (ICML). 2010: 1015-1022.
    [16]
    Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[DB/OL]. arXiv preprint arXiv: 1012.2599, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (518) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return