Volume 35 Issue 11
Oct.  2023
Turn off MathJax
Article Contents
Liu Xinyue, Guan Chaoran, Deng Jiaolong, et al. Optimal core design analysis for a small mobile helium-xenon cooled solid reactor[J]. High Power Laser and Particle Beams, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253
Citation: Liu Xinyue, Guan Chaoran, Deng Jiaolong, et al. Optimal core design analysis for a small mobile helium-xenon cooled solid reactor[J]. High Power Laser and Particle Beams, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253

Optimal core design analysis for a small mobile helium-xenon cooled solid reactor

doi: 10.11884/HPLPB202335.230253
  • Received Date: 2023-08-06
  • Accepted Date: 2023-10-12
  • Rev Recd Date: 2023-10-12
  • Available Online: 2023-10-20
  • Publish Date: 2023-11-11
  • Due to electricity needs of scenarios such as remote areas and emergency situations, mobile nuclear power sources with high reliability and long life are needed. A conceptual design scheme of a small mobile helium-xenon cooled solid reactor has been proposed in previous work. This study aims to obtain a lightweight and compact core design and improve the design scheme of sliding reflector segments for reliable reactivity control. Firstly, under the design constraints of reactor life and thermal safety, the core geometry optimization analysis was performed using OpenMC, and a design scheme to obtain minimal mass of core was achieved. Secondly, the study analyzed the influence of burnable poison on power distribution and by adding a 2% mass fraction of Gd2O3 to the fuel rods near the reflector region, the radial power factor was reduced from 2.22 to 1.43 at the beginning of life. Finally, by partitioning the sliding reflector, a linear introduction of reactivity was achieved, and it can also ensure the reactor safety in case of accidents. This study provides a certain reference for the design of small gas-cooled solid reactor.
  • loading
  • [1]
    Wollman M J, Zika M J. Prometheus project reactor module final report, for naval reactors information[R]. West Mifflin: Knolls Atomic Power Lab. , 2006.
    [2]
    Ashcroft J, Eshelman C. Summary of NR program Prometheus efforts[J]. AIP Conference Proceedings, 2007, 880(1): 497-521.
    [3]
    郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 2019, 53(1):16-23

    Guo Kailun, Wang Chenglong, Qiu Suizheng, et al. Analysis on thermoelectric conversion characteristic of Brayton cycle in megawatt-class nuclear electric propulsion system[J]. Atomic Energy Science and Technology, 2019, 53(1): 16-23
    [4]
    El-Genk M S, Tournier J M. Noble-gas binary mixtures for closed-Brayton-cycle space reactor power systems[J]. Journal of Propulsion and Power, 2007, 23(4): 863-873. doi: 10.2514/1.27664
    [5]
    Zhou Biao, Ji Yu, Sun Jun, et al. Nusselt number correlation for turbulent heat transfer of helium–xenon gas mixtures[J]. Nuclear Science and Techniques, 2021, 32: 128. doi: 10.1007/s41365-021-00972-1
    [6]
    Meng Tao, Tan Sichao, He Yuhao, et al. Preliminary design considerations of He-Xe mixture cooled space nuclear reactor[C]//Proceedings of the 26th International Conference on Nuclear Engineering. 2018: V009T16A012.
    [7]
    Li Zeguang, Sun Jun, Liu Malin, et al. Design of a hundred-kilowatt level integrated gas-cooled space nuclear reactor for deep space application[J]. Nuclear Engineering and Design, 2020, 361: 110569. doi: 10.1016/j.nucengdes.2020.110569
    [8]
    Buden D. Summary of space nuclear reactor power systems, 1983--1992[R]. Idaho Falls: Idaho National Engineering Lab. , 1993.
    [9]
    Rhee H S, Wetch J R, Gunther N, et al. Space-R thermionic space nuclear power system with single cell incore thermionic fuel elements[J]. AIP Conference Proceedings, 1992, 246(1): 120-129.
    [10]
    Li Jian, Zhou Qin, Xia Yan, et al. Study on reactivity control strategies for the thermoelectric integrated space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 145: 107607. doi: 10.1016/j.anucene.2020.107607
    [11]
    Guan Chaoran, Chai Xiang, Zhang Tengfei, et al. Preliminary lightweight core design analysis of a micro-transportable gas-cooled thermal reactor[J]. International Journal of Energy Research, 2022, 46(12): 17416-17428. doi: 10.1002/er.8408
    [12]
    El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J]. Journal of Nuclear Materials, 2005, 340(1): 93-112. doi: 10.1016/j.jnucmat.2004.10.118
    [13]
    沈芷睿, 孙启政, 何东豪, 等. 基于BEAVRS基准题高保真建模的OpenMC程序和NECP-X程序的对比验证[J]. 核技术, 2022, 45:010602

    Shen Zhirui, Sun Qizheng, He Donghao, et al. Comparison and verification of NECP-X and OpenMC using high-fidelity BEAVRS benchmark models[J]. Nuclear Techniques, 2022, 45: 010602
    [14]
    于平安, 朱瑞安, 喻真烷, 等. 核反应堆热工分析[M]. 上海: 上海交通大学出版社, 2002

    Yu Ping’an, Zhu Ruian, Yu Zhenwan, et al. Thermal analysis of nuclear reactor[M]. Shanghai: Shanghai Jiaotong University Press, 2002
    [15]
    沈维道, 郑佩芝, 蒋淡安. 工程热力学[M]. 北京: 高等教育出版社, 1983

    Shen Weidao, Zheng Peizhi, Jiang Danan. Engineering thermodynamics[M]. Beijing: Higher Education Press, 1983
    [16]
    Driscoll M J, Downar T J, Pilat E E. The linear reactivity model for nuclear fuel management[M]. La Grange Park: American Nuclear Society, 1990.
    [17]
    刘思佳, 朱贵凤, 严睿, 等. 小型模块化氟盐冷却高温堆可燃毒物布置方案[J]. 核技术, 2020, 43:050602 doi: 10.11889/j.0253-3219.2020.hjs.43.050602

    Liu Sijia, Zhu Guifeng, Yan Rui, et al. Placement scheme of burnable poisons in a small modular fluoride-cooled high temperature reactor[J]. Nuclear Techniques, 2020, 43: 050602 doi: 10.11889/j.0253-3219.2020.hjs.43.050602
    [18]
    Hossain T, Sahadath H, Nabila U M. Neutronic and fuel cycle performance of VVER-1000 for dual cooled annular fuel with coated burnable poison[J]. Progress in Nuclear Energy, 2022, 145: 104139. doi: 10.1016/j.pnucene.2022.104139
    [19]
    张成龙, 袁媛, 堵树宏, 等. 气冷微型堆可燃毒物研究[J]. 强激光与粒子束, 2022, 34:026010 doi: 10.11884/HPLPB202234.210264

    Zhang Chenglong, Yuan Yuan, Du Shuhong, et al. Research on burnable poison in micro gas-cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026010 doi: 10.11884/HPLPB202234.210264
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article views (582) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return