Zheng Qi, Wu Hongchun, Li Yunzhao, et al. Coupled stochastic-deterministic method for accelerator-driven subcritical system transient analysis[J]. High Power Laser and Particle Beams, 2018, 30: 016001. doi: 10.11884/HPLPB201830.170243
Citation: Liu Bida, Huang Zhimeng, Zhang Fan, et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 2023, 35: 111001. doi: 10.11884/HPLPB202335.230308

Recent progress of temporal coherent combination of chirped pulses in fiber lasers

doi: 10.11884/HPLPB202335.230308
  • Received Date: 2023-09-11
  • Accepted Date: 2023-10-26
  • Rev Recd Date: 2023-10-25
  • Available Online: 2023-10-27
  • Publish Date: 2023-11-11
  • Temporal coherent combination further extends the pulse duration by assembling many pulses in a train passed through the amplifier into one output pulse, which can improve the peak power and pulse energy effectively and avoid nonlinear effects excited by the high peak power in the amplification. Spatial and temporal pulse combination can overcome limitations in single fiber laser, potentially leading to higher pulse energy, average power and peak power of ultrafast pulses currently only available from bulk amplifiers with low repetition rates. In this paper, the principles and key technologies of temporal coherent combination of ultrafast pulses in fiber lasers are introduced. The current status of temporal coherent combination and their technologies are reviewed. Recent progress of Divided Pulse Amplification (DPA) and Coherent Pulse Stacking (CPS) is emphasized. Different technical ways are compared and analyzed. Several future perspectives are pointed out. The paper can be a reference for research on temporal coherent combination of chirped pulses.

  • [1]
    Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260. doi: 10.1364/OE.19.000255
    [2]
    Wan Peng, Yang L M, Liu Jian. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854
    [3]
    Délen X, Zaouter Y, Martial I, et al. Yb: YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111. doi: 10.1364/OL.38.000109
    [4]
    Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874. doi: 10.1038/nphoton.2013.280
    [5]
    Zhao Wei, Hu Xiaohong, Wang Yishan. Femtosecond-pulse fiber based amplification techniques and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 310513.
    [6]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.
    [7]
    Liu Yicai, Wu Jingfeng, Wen Xiaoxiao, et al. >100 W GHz femtosecond burst mode all-fiber laser system at 1.0 μm[J]. Optics Express, 2020, 28(9): 13414-13422. doi: 10.1364/OE.391515
    [8]
    Cao Xue, Li Qianglong, Li Feng, et al. Femtosecond Yb-doped tapered fiber pulse amplifiers with peak power of over hundred megawatts[J]. Optics Express, 2023, 31(4): 5507-5518. doi: 10.1364/OE.480637
    [9]
    Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862
    [10]
    Li Feng, Zhao Wei, Wang Yishan, et al. Large dispersion-managed broadband high-energy fiber femtosecond laser system with sub 300 fs pulses and high beam quality output[J]. Optics & Laser Technology, 2023, 157: 108653.
    [11]
    Zhang Yao, Wang Jingshang, Teng Hao, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
    [12]
    Yang Ruoao, Zhao Minghe, Jin Xingang, et al. Attosecond timing jitter from high repetition rate femtosecond “solid-state fiber lasers”[J]. Optica, 2022, 9(8): 874-877. doi: 10.1364/OPTICA.457835
    [13]
    Schimpf D N, SeiseE, EidamT, et al. Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping[J]. Optics Letters, 2009, 34(24): 3788-3790. doi: 10.1364/OL.34.003788
    [14]
    Jocher C, Eidam T, Hädrich S, et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 2012, 37(21): 4407-4409. doi: 10.1364/OL.37.004407
    [15]
    Schimpf D N, Seise E, Limpert J, et al. Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 2009, 17(7): 4997-5007. doi: 10.1364/OE.17.004997
    [16]
    Schimpf D N, Seise E, Limpert J, et al. The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems[J]. Optics Express, 2008, 16(14): 10664-10674. doi: 10.1364/OE.16.010664
    [17]
    Li Hao, Wang Meng, Wu Baiyi, et al. Femtosecond laser fabrication of chirped and tilted fiber Bragg gratings for stimulated Raman scattering suppression in kilowatt-level fiber lasers[J]. Optics Express, 2023, 31(8): 13393-13401. doi: 10.1364/OE.485143
    [18]
    Song Huaqing, Yan Donglin, Wu Wenjie, et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG[J]. Optics Express, 2021, 29(13): 20535-20544. doi: 10.1364/OE.426979
    [19]
    Tao Rumao, Xiao Hu, Zhang Hanwei, et al. Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities[J]. Optics Express, 2018, 26(19): 25098-25110. doi: 10.1364/OE.26.025098
    [20]
    Farrow R L, Kliner D A V, Hadley G R, et al. Peak-power limits on fiber amplifiers imposed by self-focusing[J]. Optics Letters, 2006, 31(23): 3423-3425.
    [21]
    Huang Zhihua, Wang Jianjun, Lin Honghuan, et al. Self-focusing length in highly multimode ultra-large-mode-area fibers[J]. Optics Express, 2012, 20(13): 14604-14613. doi: 10.1364/OE.20.014604
    [22]
    Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Academic Press, 2007.
    [23]
    Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [24]
    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [25]
    Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [26]
    Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E.
    [27]
    Ke Weiwei, Wang Xiaojun, Bao Xianfeng, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 2013, 21(12): 14272-14281. doi: 10.1364/OE.21.014272
    [28]
    Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184
    [29]
    Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
    [30]
    Wang Guangjian, Song Jiaxin, Chen Yisha, et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 2022, 10: e22. doi: 10.1017/hpl.2022.12
    [31]
    Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75
    [32]
    Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
    [33]
    Grebing C, Müller M, Buldt J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998
    [34]
    Teng Hao, He Xinkui, Zhao Kun, et al. Attosecond laser station[J]. Chinese Physics B, 2018, 27: 074203.
    [35]
    杨康文. 光纤飞秒光梳高功率放大与控制[D]. 上海: 华东师范大学, 2014: 75-103

    Yang Kangwen. High power amplification and precise control of optical fiber frequency comb[D]. Shanghai: East China Normal University, 2014: 75-103
    [36]
    Klenke A, Hädrich S, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522.
    [37]
    Huang Shuwei, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479. doi: 10.1038/nphoton.2011.140
    [38]
    Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [39]
    Stark H, Buldt J, Müller M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. doi: 10.1364/OL.417032
    [40]
    Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [41]
    Klenke A, Steinkopff A, Aleshire C, et al. 500W rod-type 4×4 multicore ultrafast fiber laser[J]. Optics Letter, 2022, 47(2): 345-348. doi: 10.1364/OL.445302
    [42]
    Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Optics Express, 2013, 21(11): 13555-13563. doi: 10.1364/OE.21.013555
    [43]
    Chang W Z, Zhou Tong, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897
    [44]
    Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430
    [45]
    Chia S H, Cirmi G, Fang Shaobo, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322. doi: 10.1364/OPTICA.1.000315
    [46]
    Tian Haochen, Song Youjian, Meng Fei, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Optics Letters, 2016, 41(22): 5142-5145. doi: 10.1364/OL.41.005142
    [47]
    Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 2017, 25(12): 13494-13503. doi: 10.1364/OE.25.013494
    [48]
    Zhou Tong, Ruppe J, Zhu Cheng, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442
    [49]
    Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3: e211.
    [50]
    粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47:0103001 doi: 10.3788/IRLA201847.0103001

    Su Rongtao, Zhou Pu, Zhang Pengfei, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47: 0103001 doi: 10.3788/IRLA201847.0103001
    [51]
    王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70:034206

    Wang Jingshang, Zhang Yao, Wang Junli, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70: 034206
    [52]
    Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255. doi: 10.1364/OL.37.000253
    [53]
    Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627
    [54]
    Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106-108. doi: 10.1364/OL.38.000106
    [55]
    Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 40(1): 89-92. doi: 10.1364/OL.40.000089
    [56]
    Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb: YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904. doi: 10.1364/OE.24.009896
    [57]
    Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 2013, 21(23): 29031-29042. doi: 10.1364/OE.21.029031
    [58]
    Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052. doi: 10.1364/OL.39.001049
    [59]
    Yang Bowei, Liu Guanyu, Abulikemu A, et al. Coherent stacking of 128 pulses from a GHz repetition rate femtosecond Yb: fiber laser[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2020: JW2F. 28.
    [60]
    Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122: 297.
    [61]
    Ruppe J, Zhou Tong, Zhu Cheng, et al. Cascading of coherent pulse stacking using multiple Gires-Tournois interferometers[C]//Proceedings of the Advanced Solid State Lasers 2015. 2015: AW3A. 4.
    [62]
    Ruppe J, Chen Siyun, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C]//Proceedings of the Advanced Solid State Lasers 2016. 2016: AM4A. 6.
    [63]
    Ruppe III J M. Theoretical and experimental foundations of coherent pulse stacking amplification[D]. Michigan: University of Michigan, 2017: 105-107.
    [64]
    Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343
    [65]
    Stark H, Buldt J, Müller M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529
    [66]
    Stark H, Benner M, Buldt J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617
    [67]
    Zhou Shian, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873. doi: 10.1364/OL.32.000871
    [68]
    Xu Yilun, Wilcox R, Byrd J, et al. FPGA-based optical cavity phase stabilization for coherent pulse stacking[J]. IEEE Journal of Quantum Electronics, 2018, 54: 1600111.
    [69]
    许逸伦. 激光脉冲相干堆积的理论与实验研究[D]. 北京: 清华大学, 2018: 52-70

    Xu Yilun. Theoretical and experimental study on coherent pulse stacking[D]. Beijing: Tsinghua University, 2018: 52-70
    [70]
    Pei Hanzhang. High fidelity coherent pulse stacking amplification with intelligent system controls[D]. Michigan: University of Michigan, 2021: 62-68.
    [71]
    Du Weizhi, Hyeon E, Pei Hanzhang, et al. Improved machine learning algorithms for optimizing coherent pulse stacking amplification[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
    [72]
    Pei Hanzhang, Whittlesey M, Du Qiang, et al. Design and operation of coherent pulse stacking amplification as a deep recurrent neural network[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
    [73]
    Abuduweili A, Yang Bowei, Zhang Zhigang. Control of delay lines with reinforcement learning for coherent pulse stacking[C]//Proceedings of 2020 Conference on Lasers and Electro-Optics. 2020: 1-2.
    [74]
    Abuduweili A, Wang Jie, Yang Bowei, et al. Reinforcement learning based robust control algorithms for coherent pulse stacking[J]. Optics Express, 2021, 29(16): 26068-26081. doi: 10.1364/OE.426906
    [75]
    Ristau D. Laser-induced damage in optical materials[M]. Boca Raton: CRC Press, 2014.
    [76]
    黄智蒙, 李克洪, 张帆, 等. 4路光纤超短脉冲阵列光程相位自适应控制[J]. 强激光与粒子束, 2022, 34:129902 doi: 10.11884/HPLPB202234.220366

    Huang Zhimeng, Li Kehong, Zhang Fan, et al. Adaptive control of optical path and phase in a coherent array of four ultrashort pulsed fiber[J]. High Power Laser and Particle Beams, 2022, 34: 129902 doi: 10.11884/HPLPB202234.220366
    [77]
    左言磊, 魏晓峰, 朱启华, 等. 用于快点火研究的超短脉冲的相干合成[J]. 强激光与粒子束, 2006, 18(12):2101-2104

    Zuo Yanlei, Wei Xiaofeng, Zhu Qihua, et al. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 2101-2104
  • Relative Articles

    [1]Xie Rong, Hao Jianhong, Zhao Qiang, Zhang Fang, Fan Jieqing, Xue Bixi, Dong Zhiwei, Cao Xiangchun. Research on Monte Carlo calculation method for photon absorbed dose[J]. High Power Laser and Particle Beams, 2024, 36(10): 106003. doi: 10.11884/HPLPB202436.240037
    [2]Li Jie, Li Yunzhao, Wu Hongchun, Zheng Qi. Weighted Monte Carlo solution of neutron kinetics equations[J]. High Power Laser and Particle Beams, 2018, 30(1): 016009. doi: 10.11884/HPLPB201830.170242
    [3]Sun Shiqiao, Pan Ziwen, Li Mengke, Zhou Yidong. Study of reactor criticality and kinetics calculation methods based on Geant4[J]. High Power Laser and Particle Beams, 2017, 29(05): 056007. doi: 10.11884/HPLPB201729.160413
    [4]Wang Yongpeng, Guo Yuhui, Luo Bingfeng, Luo Jiangbo, Liu Haitao, Wang Jing, Liu Ting. Design of accelerator beam cut control system based on FPGA[J]. High Power Laser and Particle Beams, 2016, 28(10): 105103. doi: 10.11884/HPLPB201628.160004
    [5]Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695
    [6]Cheng Zhenbo, Liu Xiaolong, Yan Junkai. Evaluation of uncertainty in peak detector calibration based on Monte-Carlo method[J]. High Power Laser and Particle Beams, 2016, 28(11): 113007. doi: 10.11884/HPLPB201628.151066
    [7]Yang Qingxi, Zhou Xing, Wang Qingguo, Yao Kai, Jiang Bo. Equivalent circuit model for transient analysis of lossy non-uniform transmission line network[J]. High Power Laser and Particle Beams, 2016, 28(11): 113201. doi: 10.11884/HPLPB201628.160154
    [8]Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002
    [9]Jiang Ziyun, Zhang Peng, Niu Xiaofei, Guo Xiaohong, Zhang Junhui, He Yuan. Vacuum control system of the injector Ⅱ for accelerator driven sub-critical system[J]. High Power Laser and Particle Beams, 2015, 27(08): 085101. doi: 10.11884/HPLPB201527.085101
    [10]Zheng Yawei, Xu Weibin, Luo Bingfeng, Guo Yuhui. Sub-control system based on PXIe controller for high intensity proton accelerator[J]. High Power Laser and Particle Beams, 2014, 26(09): 095101. doi: 10.11884/HPLPB201426.095101
    [11]Chen Li, Ma Hao, Zeng Zhi, Li Junli, Cheng Jianping. Monte Carlo-based sourceless efficiency calibration method of HPGe γ spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(01): 201-206. doi: 10.3788/HPLPB20132501.0201
    [12]Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015
    [13]Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983
    [14]Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023
    [15]Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970
    [16]Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006
    [17]Zheng Zheng, Wu Hongchun, Cao LiangZhi, Zheng Youqi, Zhang Hongbo, Wang Mengqi. Application of Monte Carlo and discrete ordinate coupling method to pressurized water reactor cavity radiation streaming calculation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2946-2950. doi: 10.3788/HPLPB20122412.2946
    [18]fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [19]zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [20]chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
  • Cited by

    Periodical cited type(2)

    1. 冷坤,杨云涛,黄雁华,周璇,武文远. 小样本机器学习的激光传输效能评估方法. 陆军工程大学学报. 2024(03): 36-42 .
    2. 鄂晶晶,杨丽华,冯锋. 基于激光扫描的杂散光数据传输优化方法. 激光杂志. 2023(06): 172-176 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 73.7 %META: 73.7 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 0.2 %其他: 0.2 %Baden: 0.5 %Baden: 0.5 %China: 0.6 %China: 0.6 %India: 0.2 %India: 0.2 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %United States: 0.1 %United States: 0.1 %[]: 1.1 %[]: 1.1 %上海: 1.2 %上海: 1.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %北京: 17.2 %北京: 17.2 %台州: 0.3 %台州: 0.3 %塔城: 0.1 %塔城: 0.1 %多伦多: 0.1 %多伦多: 0.1 %天津: 0.2 %天津: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 0.3 %张家口: 0.3 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.3 %杭州: 0.3 %格兰特县: 0.1 %格兰特县: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.7 %武汉: 0.7 %洛杉矶: 0.1 %洛杉矶: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.2 %湖州: 0.2 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 22.4 %芒廷维尤: 22.4 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 44.9 %西宁: 44.9 %西安: 0.5 %西安: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %其他其他BadenChinaIndiaKorea Republic ofUnited States[]上海中山临汾丹东丽水乌鲁木齐北京台州塔城多伦多天津广州张家口成都晋城普洱杭州格兰特县桃园武汉洛杉矶深圳湖州石家庄秦皇岛芒廷维尤芝加哥衢州西宁西安贵阳运城重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(2)

    Article views (705) PDF downloads(165) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return