Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25: 375-380. doi: 10.3788/HPLPB20132502.0375
Citation:
Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25: 375-380. doi: 10.3788/HPLPB20132502.0375
Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25: 375-380. doi: 10.3788/HPLPB20132502.0375
Citation:
Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25: 375-380. doi: 10.3788/HPLPB20132502.0375
The passive diagnostic for radiation driven shock velocity is of critical importance in the research of radiation driven fusion and extreme high-pressure equation of state. Such diagnostic has been set up on SG-Ⅱ and the laser prototype facility. The control technique of signal-to-noise of shock breakout images has been developed based on the theoretical analysis and experimental study which shows that the stray light such as stimulated scattering light is 4 order stronger than the shock light. The precise temporal-resolved technique has also been developed based on the successful application of the faster sweep rate of the streak camera with aids of high-quality light triggering instead of traditional electronic triggering. The developed passive diagnostic has been validated successfully by an experiment whose results show the shock image is clear and the deduced shock velocity is consistent with the calculated one.